全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

电磁力控制翼型绕流分离的增升减阻效率研究

DOI: 10.6052/0459-1879-14-346, PP. 414-421

Keywords: 电磁力,翼型绕流,流动控制,控制效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

电磁力可有效对流体流动进行控制,增升减阻,抑制流动分离,制约其推广应用的瓶颈为控制效率问题.为提高其控制效率,基于翼型绕流的电磁力控制,对电磁力增升减阻的控制效率问题进行数值研究.根据能量守恒定律,推导电磁力控制能耗的比,基于升力和阻力计算节省能量.定义电磁力的控制效率为能量节省与电磁力控制所需能耗的比值,研究不同工况下电磁力增升减阻的控制效率.发现在控制开始阶段,电磁力能量主要消耗在增加边界层流体的动能上,电磁力控制效率非常低,但电磁力控制效率会随着电磁力工作时间的增长而增加;电磁力控制效率随着来流速度的增加呈指数下降;通过增加电磁力激活板的输入能量可增强电磁力的控制效果,但无法明显增加其控制效率.

References

[1]  Pulugundla G, Heinicke C, Karcher C, et al. Lorentz force velocimetry with a small permanent magnet. European Journal of Mechanics-B/Fluids, 2013, 41: 23-28
[2]  Gailitis A, Lielausis O. On the possibility of drag reduction of a flat plate in an electrolyte. Appl Magnetohydrodyn Trudy Inst Fisiky AN Latvia SSR, 1961, 12: 143
[3]  Henoch C, Stace J. Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Physics of Fluids, 1995, 7: 1371-1383
[4]  Berger TW, Kim J, Lee C, et al. Turbulent boundary layer control utilizing the Lorentz force. Physics of Fluids, 2000, 12: 631-649
[5]  Pang J, Choi K-S. Turbulent drag reduction by Lorentz force oscillation. Physics of Fluids, 2004, 16: L35
[6]  Du Y, Symeonidis V, Karniadakis G. Drag reduction in wall-bounded turbulence via a transverse travelling wave. Journal of Fluid Mechanics, 2002, 457: 1-34
[7]  Mutschke G, Gerbeth G, Albrecht T, et al. Separation control at hydrofoils using Lorentz forces. European Journal of Mechanics-B/Fluids, 2006, 25: 137-152
[8]  Zhang H, Fan BC, Chen ZH, et al. Electro-magnetic control of shear flow over a cylinder for drag reduction and lift enhancement. Chinese Physics B, 2013, 22: 104701
[9]  梅栋杰, 范宝春, 陈耀慧 等. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59: 8335-8342 (Mei Dongjie, Fan Baochun, Chen Yaohui, et al. Experimental investigation on turbulent channel flow utilizing spanwise oscillating Lorentz force. Acta Physica Sinica, 2010, 59: 8335-8342 (in Chinese))
[10]  尹纪富, 尤云祥, 李巍 等. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63: 044701 (Yin Jifu, You Yunxiang, Li Wei, et al. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63: 044701 (in Chinese))
[11]  Liu ZK, Zhou BM, Liu HX, et al. Numerical investigation on feedback control of flow around an oscillating hydrofoil by Lorentz force. Fluid Dynamics Research, 2013, 45: 035502
[12]  Shatrov V, Gerbeth G. Magnetohydrodynamic drag reduction and its efficiency. Physics of Fluids, 2007, 19: 035109
[13]  陈耀慧, 范宝春, 陈志华 等. 翼型绕流电磁控制的实验和数值研究. 物理学报, 2008, 57: 648-653 (Chen Yaohui, Fan Baochun, Chen Zhihua, et al. Experimental and numerical inve stigations on the electro-magnetic control of hydrofoil wake. Acta Physica Sinica, 2008, 57: 648-653 (in Chinese))
[14]  陈耀慧, 董祥瑞, 陈志华 等. 翼型绕流的洛仑兹力控制机理. 物理学报, 2014, 63: 034701 (Chen Yaohui, Dong Xiangrui, Chen Zhihua, et al. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63: 034701 (in Chinese))
[15]  Rogers SE, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA Journal, 1991, 29: 603-610

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133