全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

等压比热在基于壁面放电的激波控制中的影响

DOI: 10.6052/0459-1879-14-031, PP. 51-60

Keywords: 变等压比热,壁面放电,激波控制,超音速进气道,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

放电等离子体对流动的控制机理可按热效应和非热效应分为两大类,其中放电等离子体的热效应对流场中激波结构有着明显的控制作用.目前在放电等离子体热激励对激波控制的数值模拟过程中,通常采用等效热源的方式来实现放电的热效应,数值模拟和实验的结果显示放电产生的局部温度可达到上万度.如果数值模拟的过程中没有考虑到气体等压比热随温度的非线性变化,计算得到的结果是有失真实性的.本文以5马赫的超音速进气道为平台,对基于壁面放电的激波控制过程进行了数值模拟.选取了随温度非线性变化的等压比热,并且将其结果与定等压比热的计算结果进行了对比.结果发现(1)两种等压比热下,计算结果显示放电热激励在激波控制上都有着显著的效果;(2)两种计算结果在模拟与温度相关的参数(温度、马赫数和总压恢复系数)上的差别非常明显.因此,为了获得壁面放电对激波控制更真实的计算结果,必须考虑到等压比热随温度发生非线性变化效应的影响.

References

[1]  Shang JS, Surzhikov ST, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control. Progress in Aerospace Sciences, 2005, 41(1): 642-668
[2]  Shang JS, Huang PG, Paul DB. Progress in computational magneto-fluid-dynamics for flow control. In: Computational Fluid Dynamics, New York: Springer, 2009
[3]  Todd MR, Nachiket VK, Gregory SE, et al. Experimental characterization of a pulsed plasma jet. AIAA Journal, 2013, 51(8): 2027-2031
[4]  Correale G, Popov IB, Rakitin AE, et al. Flow separation control on airfoil with pulsed nanosecond discharge actuator. AIAA paper 2011-1079, 2011
[5]  Roupassov DV, Nikipelov AA, Nudnova MM, et al. Flow separation control by plasma actuator with nanosecond pulse-periodic discharge. AIAA Journal, 2009, 47(1): 68-185
[6]  Leonov S, Firsov A, Yarantsev D, et al. Flow control in supersonic inlet model by electrical discharge. AIAA paper 2009-7367, 2009
[7]  Leonov SB, Sermanov VN, Yarantsev DA, et al. Supersonic rupture's shock control by electrical discharge. In: New Trends in Fluid Mechanics Research, Beijing: Springer, 2009, 190-193
[8]  Miles R, Macheret S. Plasma control of shock waves in aerodynamics and sonic boom mitigation, AIAA paper 2001-3062, 2001
[9]  Meyer R, Palm P, Plonjes E. The effect of a nonequil- ibrium RF discharge plasma on a conical shock wave in a M=2.5 flow. AIAA paper 2001-3059, 2001
[10]  Starikovskaia SM. Plasma assisted ignition and combustion. Topical Review, Journal of Physics D——Applied Physics, 2006, 39(16): 265-299
[11]  Leonov SB, Yarantsev DA. Plasma-induced ignition and plasma-assisted combustion in high-speed flow. Plasma Sources Science and Technology, 2007, 16(1): 132
[12]  Starikovskaia M, Starikovskii Yu. Plasma-assisted ignition and combustion. In: Handbook of Combustion Vol.5, 2010: 45-67
[13]  Webb N, Clifford C, Samimy M. An investigation of the control mechanism of plasma actuators in a shock wave-boundary layer interaction. AIAA paper 2013-402,2013
[14]  Leonov S, Yarantsev D. Near-surface electrical discharge in supersonic airow: Properties and flow control. Journal of Propulsion and Power, 2008, 24(6): 1168-1181
[15]  David SD. Fifty years of shock-wave/boundary-layer interaction research: what next. AIAA Journal, 2001, 39(8): 1517-1531
[16]  袁湘江, 涂国华, 张涵信 等. 激波边界层的相互作用对扰动波传播的影响. 空气动力学学报, 2006, 24(1): 22-27 (Yuan Xiangjiang, Tu Guohua, Zhang Hanxin, et al. Disturbance waves evolvement influenced by shock-boundary interaction. Acta Aerodynamica Sinica, 2006, 24(1): 22-27 (in Chinese))
[17]  Tindell R, Willis B. Experimental investigation of blowing for controlling oblique shock/boundary layer interactions. AIAA paper 1997-2642, 1997
[18]  Jenkins L, Gorton S, Anders S. Flowed control device evaluation for an internal flow with an adverse pressure gradient. AIAA paper 2002-266, 2002
[19]  许晓平,周洲. 飞翼布局无人机流动分离控制及机理分析.力学学报 , 2014, 46(4): 497-504 (Xu Xiaoping, Zhou Zhou. Active separation control for the flying-wing UAV using synthetic jet. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 497-504 (in Chinese))
[20]  任三星,李学来,郭荣伟.埋入式进气道流场控制研究. 航空学报, 2000, 21(3): 226-229 (Ren Sanxing, Li Xuelai, Guo Rongwei. Embedded inlet flow control researching. Acta Aeronautica et Astronautica Sinica , 2000, 21(3): 226-229 (in Chinese))
[21]  Yan H. Near-surface discharge in supersonic inlet control. AIAA paper 2013-0530, 2013
[22]  Leonov S, Bityurin V, Savelkin K, et al. The features of electro-discharge plasma control of high-speed gas flows. AIAA paper 2002-2180, 2002
[23]  Anderson JD. Hypersonic and High Temperature Gas Dynamics, New York: McGraw-Hill, 1989: 674-688
[24]  Boulos M, Fauchaus F, Pfender E. Thermal Plasmas: Fundamentals and Applications, New York, Wiley, 1994: 563-587
[25]  Miller EJ, Sandler SI. Transport properties of two-temperature partially ionized argon. Physics of Fluids, 1973, 16(4): 491-494
[26]  陈松,孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27 (Chen Song, Sun Quanhua. Analysis of maximum dissocicaion degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese))
[27]  Gupta RN, Lee KP, Thompson RA, et al. Calculation and curve fits of thermodynamic and transport properties for equilibrium air to 30000K. NASA RP-1260, 1991: 443-459
[28]  Balakrishnan A. Correlations for species heats of air species to 50000K. AIAA paper 1986-1277,1986
[29]  Menter FR. Two equation eddy viscosity turbulence models for engineering Applications. AIAA Journal, 1994, 32(8): 1598-1605
[30]  李邦明,鲍麟,童秉纲. 高超声速压缩拐角峰值热流位置预测模型研究. 力学学报, 2012, 44(5): 869-875 (Li Bangming, Bao Lin, Tong Binggang. Theoretical modeling for the prediction of the location of peak heat flux for hypersonic compression ramp flow. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 869-875 (in Chinese))
[31]  Liou MS, Steen CJ. A new flux splitting scheme. Journal of Computational Physics , 1993, 107(1): 23-39

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133