全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

碎石堆小行星的散体动力学建模与仿真方法综述

DOI: 10.6052/0459-1879-14-329, PP. 1-7

Keywords: 小行星探测,散体动力学,N体问题,碎石堆结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

探测小行星将是未来几十年内航天界的研究热点.现有资料表明小行星多为疏松多孔的碎石堆结构,易受探测活动的影响而破碎瓦解,因此对其探测必须先进行动力学建模,研究探测活动与小行星结构的相互作用,确保探测任务顺利执行.在中国即将开展小行星探测任务的背景下,调研分析了散体动力学的研究和发展情况;并根据国内外的相关研究,对目前碎石堆小行星动力学模型与数值模拟方法的研究进行了综述;最后,结合小行星探测的应用背景,总结了小行星散体动力学模型中需解决的关键问题.

References

[1]  李俊峰,崔文,宝音贺西. 深空探测自主导航技术综述. 力学与实践,2012,34(2): 1-9 (Li Junfeng, Cui Wei, Baoyin Hexi. A survey of autonomous navigation for deep space exploration. Mechanics in Engineering, 2012, 34(2): 1-9 (in Chinese))
[2]  李俊峰,宝音贺西. 深空探测中的动力学与控制. 力学与实践,2007,29(4): 1-8 (Li Junfeng, Baoyin Hexi. The dynamics and control for deep space exploration. Mechanics in Engineering, 2007, 29(4): 1-8 (in Chinese))
[3]  Baoyin HX, Li JF. A survey on orbital dynamics and navigation of asteroid missions. Acta Mechanica Sinica, 2014, 30(3): 282-293
[4]  Barucci MA, Cheng AF, Michel P, et al. MarcoPolo-R near earth asteroid sample return mission. Experimental Astronomy, 2012, 33(2-3): 645-684
[5]  Scheeres DJ, Ostro SJ, Hudson RS, et al. Orbits close to asteroid 4769 Castalia. Icarus, 1996, 121(1): 67-87
[6]  Scheeres DJ, Ostro SJ, Hudson RS, et al. Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 1998, 132(1): 53-79
[7]  Hu WD, Scheeres DJ. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planetary and Space Science, 2004, 52(8): 685-692
[8]  Hu WD, Scheeres DJ. Averaging analyses for spacecraft orbital motions around asteroids. Acta Mechanica Sinica, 2014, 30(3): 294-300
[9]  Hu WD, Scheeres DJ. Spacecraft motion about slowly rotating asteroids. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 765-775
[10]  Tricarico P, Sykes MV. The dynamical environment of Dawn at Vesta. Planetary and Space Science, 2010, 58(12): 1516-1525
[11]  Liu XD, Baoyin HX, Ma XR. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophysics and Space Science, 2011, 333(2): 409-418
[12]  Yu Y, Baoyin HX. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. The Astronomical Journal, 2012, 143(3): 62
[13]  Yu Y, Baoyin HX. Generating families of 3D periodic orbits about asteroids. Monthly Notices of the Royal Astronomical Society, 2012, 427(1): 872-881
[14]  Yu Y, Baoyin HX. Routing the asteroid surface vehicle with detailed mechanics. Acta Mechanica Sinica, 2014, 30(3): 301-309
[15]  Li XY, Qiao D. Modeling method and preliminary model of asteroid Toutatis from Chang'e-2. Acta Mechanica Sinica, 2014, 30(3): 310-315
[16]  Wang XY, Gong SP, Li JF. A method for classifying orbits near asteroids. Acta Mechanica Sinica, 2014, 30(3): 316-325
[17]  Jiang Y, Baoyin HX, Li JF, et al. Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophysics and Space Science, 2014, 349(1): 83-106
[18]  Fujiwara A, Kawaguchi J, Yeomans DK, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 2006, 312(5778): 1330-1334
[19]  Scheeres DJ, Hartzell CM, Sánchez P, et al. Scaling forces to asteroid surfaces: The role of cohesion. Icarus, 2010, 210(2): 968-984
[20]  Huang JC, Ji JH, Ye PJ, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang'e-2. Scientific Reports, 2013, 3
[21]  Britt DT, Consolmagno SJ. Modeling the structure of high porosity asteroids. Icarus, 2001, 152(1): 134-139
[22]  Cates ME, Wittmer JP, Bouchaud JP, et al. Jamming, force chains, and fragile matter. Physical Review Letters, 1998, 81(9): 1841
[23]  Daniels KE, Coppock JE, Behringer RP. Dynamics of meteor impacts. Chaos, 2004, 14(4): S4
[24]  Clark AH, Kondic L, Behringer RP. Particle scale dynamics in granular impact. Physical Review Letters, 2012, 109(23): 238302
[25]  Métayer JF, Suntrup DJ III, Radin C, et al. Shearing of frictional sphere packings. Europhysics Letters, 2011, 93(6): 64003
[26]  Murdoch N, Rozitis B, Nordstrom K, et al. Granular convection in microgravity. Physical Review Letters, 2013, 110(1): 018307
[27]  Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47-65
[28]  Haile JM. Molecular Dynamics Simulation: Elementary Methods 1st. New York: John Wiley & Sons, Inc., 1992
[29]  孙其诚,王光谦. 颗粒流动力学及其离散模型评述. 力学进展,2008,38(1): 87-100 (Sun Qicheng, Wang Guangqian. A review on the granular dynamics and discrete model. Advances in Mechanics, 2008, 38(1): 87-100 (in Chinese))
[30]  Hong DC, McLennan JA. Molecular dynamics simulations of hard sphere granular particles. Physica A: Statistical Mechanics and Its Applications, 1992, 187(1-2): 159-171
[31]  Biswas P, Sanchez P, Swift MR, et al. Numerical simulations of air-driven granular separation. Physical Review E, 2003, 68(5): 050301
[32]  Campbell CS, Cleary PW, Hopkins M. Large-scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research: Solid Earth, 1995, 100(B5): 8267-8283
[33]  Moakher M, Shinbrot T, Muzzio FJ. Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology, 2000, 109(1): 58-71
[34]  Richard P, Valance A, Métayer JF, et al. Rheology of confined granular flows: Scale invariance, glass transition, and friction weakening. Physical Review Letters, 2008, 101(24): 248002
[35]  Brilliantov NV, Spahn F, Hertzsch JM, et al. Model for collisions in granular gases. Physical Review E, 1996, 53(5): 5382
[36]  Walton OR, Braun RL. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology, 1986, 30(5): 949-980
[37]  Haff PK, Werner BT. Computer simulation of the mechanical sorting of grains. Powder Technology, 1986, 48(3): 239-245
[38]  Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. Journal of Applied Mechanics, 1997, 64(2): 383-386
[39]  Sh?fer J, Dippel S, Wolf DE. Force schemes in simulations of granular materials. Journal de Physique I, 1996, 6(1): 5-20
[40]  Stevens AB, Hrenya CM. Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technology, 2005, 154(2): 99-109
[41]  孙其诚,王光谦. 颗粒物质力学导论. 北京:科学出版社, 2009 (Sun Qicheng, Wang Guangqian. An Introduction to Granular Material Mechanics. Beijing: Science press, 2009 (in Chinese))
[42]  Mailman M, Schreck CF, O'Hern CS, et al. Jamming in systems composed of frictionless ellipse-shaped particles. Physical Review Letters, 2009, 102(25): 255501
[43]  Zeravcic Z, Xu N, Liu AJ, et al. Excitations of ellipsoid packings near jamming. Europhysics Letters, 2009, 87(2): 26001
[44]  Phillips CL, Anderson JA, Huber G, et al. Optimal filling of shapes. Physical Review Letters, 2012, 108(19): 198304
[45]  Gravish N, Franklin SV, Hu DL, et al. Entangled granular media. Physical Review Letters, 2012, 108(20): 208001
[46]  姜世平,芮筱亭,洪俊,等. 散粒体系统动力学仿真. 岩土力学,2011,32(8): 2529-2532 (Jiang Shiping, Rui Xianting, Hong Jun, et al. Dynamic simulation of granular system. Rock and Soil Mechanics, 2011, 32(8): 2529-2532 (in Chinese))
[47]  Hockney RW, Eastwood JW. Computer Simulation Using Particles. CRC Press, 1988
[48]  Aarseth SJ. Direct methods for N-body simulations. Multiple Time Scales, 1985, 1: 377-418
[49]  Ahmad A, Cohen L. A numerical integration scheme for the N-body gravitational problem. Journal of Computational Physics, 1973, 12(3): 389-402
[50]  刘步林. 改进的 Ahmad-Cohen 方法——引力 N 体问题的一个积分方法. 天文学进展,1985,3(4) : 363-370 (Liu Bulin. The improved Ahmad-Cohen scheme: a numerical intergration scheme for the gravitation N-body problem. Progress in Astronomy, 1985, 3(4): 363-370 (in Chinese))
[51]  Dormand JR, Prince PJ. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy. Celestial Mechanics, 1978, 18(3): 223-232
[52]  Chin SA, Chen CR. Forward symplectic integrators for solving gravitational few-body problems. Celestial Mechanics and Dynamical Astronomy, 2005, 91(3-4): 301-322
[53]  Xu J, Wu X. Several fourth-order force gradient symplectic algorithms. Research in Astronomy and Astrophysics, 2010, 10(2): 173-188
[54]  Makino J, Aarseth SJ. On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems. Publications of the Astronomical Society of Japan, 1992, 44(2): 141-151
[55]  Nitadori K, Makino J. Sixth- and eighth-order Hermite integrator for N-body simulations. New Astronomy, 2008, 13(7): 498-507
[56]  Richardson DC, Bottke WF Jr, Love SG. Tidal distortion and disruption of Earth-crossing asteroids. Icarus, 1998, 134(1): 47-76
[57]  Leinhardt ZM, Richardson DC, Quinn T. Direct N-body Simulations of Rubble Pile Collisions. Icarus, 2000, 146(1): 133-151
[58]  Richardson DC, Elankumaran P, Sanderson RE. Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus, 2005, 173(2): 349-361
[59]  Walsh KJ, Richardson DC, Michel P. Rotational breakup as the origin of small binary asteroids. Nature, 2008, 454(7201): 188-191
[60]  Leinhardt ZM, Stewart ST. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. The Astrophysical Journal, 2012, 745(1): 79
[61]  Richardson DC, Walsh KJ, Murdoch N, et al. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus, 2011, 212(1): 427-437
[62]  Schwartz SR, Richardson DC, Michel P. An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granular Matter, 2012, 14(3): 363-380
[63]  Sánchez P, Scheeres DJ. Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. The Astrophysical Journal, 2011, 727(2): 120
[64]  Schwartz SR, Michel P, Richardson DC. Numerically simulating impact disruptions of cohesive glass bead agglomerates using the soft-sphere discrete element method. Icarus, 2013, 226(1): 67-76
[65]  Yu Y, Richardson DC, Michel P, et al. Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis. Icarus, 2014, 242: 82-96
[66]  Zhao ZJ, Zhao JD, Liu H. Development of a landing mechanism for asteroids with soft surface. International Journal of Aerospace Engineering, 2013, 2013. Article ID 873135. DOI:10.1155/2013/873135
[67]  Zhao ZJ, Zhao JD, Liu H. Landing dynamic and key parameter estimations of a landing mechanism to asteroid with soft surface. International Journal of Aeronautical and Space Sciences, 2013, 14(3): 237-246
[68]  凌道盛,蒋祝金,钟世英 等. 着陆器足垫冲击模拟月壤的数值分析. 浙江大学学报 (工学版),2013,47(7) : 1171-1177 (Ling Daosheng, Jiang Zhujin, Zhong Shiying, et al. Numerical study on impact of lunar lander footpad against simulant lunar soil. Journal of Zhejiang University (Engineering Science), 2013, 47(7) : 1171-1177 (in Chinese))
[69]  Gómez LR, Turner AM, van Hecke M, et al. Shocks near jamming. Physical Review Letters, 2012, 108(5): 058001
[70]  Fahnestock EG. The full two-body-problem: Simulation, analysis, and application to the dynamics, characteristics, and evolution of binary asteroid systems. [PhD Thesis]. Michigan: University of Michigan. 2009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133