全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

气体动理学统一算法中相容性条件不满足引起的数值误差及其影响研究

DOI: 10.6052/0459-1879-14-083, PP. 163-168

Keywords: 玻尔兹曼模型方程,统一算法,相容性条件,守恒型离散速度坐标法

Full-Text   Cite this paper   Add to My Lib

Abstract:

求解玻尔兹曼(Boltzmann)模型方程的气体动理学统一算法(unifiedgaskineticscheme,UGKS)是为模拟存在显著稀薄气体效应流动而建立的.在该方法中,如果速度空间离散采用传统的离散速度坐标法(discreteordinatemethod,DOM),将会导致相容性条件得不到严格满足,从而引入数值误差.本文从理论分析及数值试验两方面说明了该数值误差,正比于来流马赫数,反比于来流努森数.引入了守恒型的离散速度坐标法(conservativediscreteordinatemethod,CDOM),在离散层面上确保了相容性条件得到严格满足.圆柱绕流计算结果表明,来流马赫数较高、努森数较小时,相容性条件满足与否对计算结果影响较大,采用CDOM可以在较稀的速度空间网格上得到网格无关解,缩减计算量最大可达2/3.

References

[1]  费飞,樊菁. 高雷诺数方腔流动的分子模拟.力学学报, 2013, 45 (5): 653-659 (Fei Fei, Fan Jing. Molecular simulation of driven cavity flows with high Reynolds number. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 653-659 (in Chinese))
[2]  Xu K,Huang JC. A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2010, 229(20): 7747-7764
[3]  Huang JC, Xu K, Yu PB. A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases. Communications in Computational Physics, 2012, 12(3): 662-690
[4]  Chen SZ, Xu K, Lee C, et al.. A unified gas kinetic scheme with moving mesh and velocity space adaptation. Journal of Computational Physics, 2012, 231(20): 6643-6664
[5]  Huang JC, Xu K, Yu PB. A unified gas-kinetic scheme for continuum and rarefied flows III: Microflow simulations. Communications in Computational Physics, 2013, 14(5): 1147-1173
[6]  李启兵, 徐昆. 气体动理学格式研究进展. 力学进展, 2012, 42(5): 522-537(Li Qibing, Xu Kun. Progress in gas kinetic scheme. Advances in Mechanics, 2012, 42(5):522-537 (in Chinese))
[7]  江定武,毛枚良,邓小刚 等. 二维缝隙跨流域流动数值模拟. 见:计算流体力学研究进展,第十五届全国计算流体力学会议,山东烟台, 2012 (Jiang Dingwu, Mao Meiliang, Deng Xiaogang, et al. Numerical simulation of the flow through a slit covering various regimes. In: Progress in Computational Fluid Dynamics, The 15th Computational Fluid Dynamics Conference, Yantai, Shangdong, 2012 (in Chinese))
[8]  李志辉,张涵信. 稀薄流到连续流的气体运动论统一数值算法初步研究. 空气动力学学报, 2000, 18(3): 255-263 (Li Zhihui, Zhang Hanxin. Study on gas kinetic algorithm for flows from rarefied transition to continuum. Acta Aerodynamica Sinica, 2000, 18(3): 255-263 (in Chinese))
[9]  李志辉,张涵信. 稀薄流到连续流的气体运动论统一算法研究. 空气动力学学报, 2003, 21(3): 255-266(Li Zhihui, Zhang Hanxin. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. Acta Aerodynamica Sinica, 2003, 21(3): 255-266((in Chinese))
[10]  李志辉,吴俊林,蒋新宇 等. 含转动非平衡效应Boltzmann模型方程统一算法与跨流域绕流问题模拟研究. 空气动力学学报, 2014, 32(2): 137-145 (Li Zhihui, Wu Junlin,Jiang Xinyu, et al.. The unified algorithm for various flow regimes solving boltzmann model equation in rotational non-equilibrium. Acta Aerodynamica Sinica, 2014, 32(2): 137-145 (in Chinese))
[11]  李志辉,蒋新宇,吴俊林 等. 转动非平衡玻尔兹曼模型方程统一算法与全流域绕流计算应用. 力学学报, 2014, 46(3): 336-351 (Li Zhihui, Jiang Xinyu, Wu Junlin, et al. Gas-Kinetic unified algorithm for boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 336-351 (in Chinese))
[12]  Mieussens L. Discrete velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. Journal of Computational Physics, 2000, 162(2): 429-466
[13]  Arslanbekov RR, Kolobov VI,Frolova AA, Kinetic solvers with adaptive mesh in phase space. In:Abe T ed. Rarefied Gas Dynamics,Melville: Amer Inst Physics, 2013: 294-301
[14]  Chigullapalli S, Alexeenko A. Unsteady 3D rarefied flow solver based on Boltzmann-ESBGK model kinetic equations. AIAA paper2011-3993, 2011
[15]  Huang JC. A conservative discrete ordinate method for model boltzmann equations. Computers & Fluids, 2011, 45(1): 261-267
[16]  Shakhov EM. Generalization of the krook kinetic equation. Fluid Dynamics, 1968, 3(5): 95-96
[17]  Li QB, Fu S, Xu K. Application of gas kinetic scheme with kinetic boundary conditions in hypersonic flow. AIAA Journal, 2005, 43(10): 2170-2176
[18]  奚梅成,刘儒勋. 数值分析方法. 合肥:中国科技大学出版社,2003 (Xi Meicheng, Liu Ruxun. Numerical Analysis Methods. Hefei:University of Science and Technology of China Press,2003 (in Chinese))
[19]  Titarev VA. Conservative numerical methods for model kinetic equations. Computers & Fluids, 2007, 36(9): 1446-1459

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133