Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 2000, 160(2): 405-452
[2]
Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 2005, 207(2): 542-567
[3]
Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3191-3211
[4]
Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230(5): 1766-1792
[5]
刘瑜. 化学非平衡流动的计算方法研究及其在激波诱导燃烧现象模拟中的应用. [硕士论文]. 长沙: 国防科学技术大学, 2008 (Liu Yu. Numerical study of chemical nonequilibrium flow and its' application in shock-induced combustion. [Master thesis]. National Univerity of Defense Technology, 2008 (in Chinese))
[6]
Shepherd JE. SD-Toolbox
[7]
Oran ES, Boris JP. Numerical methods in reacting flows. AIAA-87-0057, 1987
[8]
Im K-S, Yu S-T J, Kim C-K. Application of the CESE mehod to detontion with realistic finite-rate chemistry. AIAA-2002-1020, 2002
[9]
Wu Y, Ma F, Yang V. Space-time method for detonation problems with finite-rate chemical kinetics. International Journal of Computational Fluid Dynamics, 2004, 18(3): 277-287
[10]
Ng HD. The effect of chemical reaction kinetics on the structure of gaseous detonations. [PhD Thesis]. McGill University, 2005
[11]
Oran ES, Weber JM, Stefaniw EI, et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combustion and Flame, 1998, 113(1-2): 147-163
[12]
Deiterding R. Parallel adaptive simulation of multi-dimensional detonation structures. [PhD Thesis]. Branderburg University of Technology Cottbus, 2003
[13]
Arienti M, Shepherd JE. A numerical study of detonation diffraction. Journal of Fluid Mechanics, 2005, 529: 117-146
[14]
Leveque RJ. Finite Volume Methods for Hypersonic Problems. Cambridge, UK: Cambridge University Press, 2004
[15]
Ferrer PJM, Buttay R, Lehnasch G, et al. A detailed verification procedure for compressible reactive multicomponent Navier-Stokes solvers. Computers & Fluids, 2014, 89: 88-110
[16]
潘振华, 范春宝, 张旭东等. 连续旋转爆轰三维流场的数值模拟. 兵工学报, 2012, 33(5): 594-599 (Pan Zhenhua, Fan Chunbao, Zhang Xudong, et al. Numerical simulation of three-dimensional flow field of continuous rotating detonation. Acta Armamentarii, 2012, 33(5): 594-599 (in Chinese))
[17]
Liu Y, Liu X. Detonation propagation characteristic of H2-O2-N2 mixture in tube and effect of various initial conditions on it. International Journal of Hydrogen Energy, 2013, 38(30): 13471-13483
[18]
Taylor BD, Kessler DA, Gamezo VN, et al. Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proceedings of the Combustion Institute, 2013, 34(2): 2009-2016
[19]
Uemura Y, Hayashi AK, Asahara M, et al. Transverse wave generation mechanism in rotating detonation. Proceedings of the Combustion Institute, 2013, 34(2): 1981-1989
[20]
Tsuboi N, Morii Y, Hayashi AK. Two-dimensional numerical simulation on galloping detonation in a narrow channel. Proceedings of the Combustion Institute, 2013, 34(2): 1999-2007
[21]
刘君, 刘瑜, 周松柏. 基于新型解耦算法的激波诱导燃烧过程数值模拟. 力学学报, 2010, 42(3): 572-577 (Liu Jun, Liu Yu, Zhou Songbai. Simulation of shock induced combustion based on a novel uncoupled method. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 572-578 (in Chinese))
[22]
刘君, 张涵信, 高树椿. 一种新型的计算化学非平衡流动的解耦方法. 国防科技大学学报, 2000, 22(5): 19-23 (Liu Jun, Zhang Hanxin, Gao Shuchun. A new uncoupled method for numerical simulation of nonequilibrium flow. Journal of National University of Defense Technology, 2000, 22(5): 19-22 (in Chinese))
[23]
刘君. 冲压加速器非平衡流动数值模拟. 弹道学报, 2002, 14(4): 31-35 (Liu Jun. Numerical study on the non-equilibrium flow of ram accelerator in the combustive mixture gas. Journal of Ballistics, 2002, 14(4): 31-35 (in Chinese))
[24]
刘君. 非平衡流计算方法及其模拟激波诱导振荡燃烧. 空气动力学学报, 2003, 21(1): 53-58 (Liu Jun. A new nonequilibrium numerical method and simulation of oscillating shock-induced combustion. Acta Aeronautica et Astronautica Sinica, 2003, 21(1): 53-57 (in Chinese))
[25]
刘君. 化学动力学模型对H2/Air超燃模拟的影响. 推进技术, 2003, 24(1): 67-70 (Liu Jun. Numerical study on chemical mechanism in supersonic H2/Air mixture gas flow. Journal of Propulsion Technology, 2003, 24(1): 67-70 (in Chinese))
[26]
刘世杰. 连续旋转爆震波结构、转播模态及自持机理研究. 长沙: 国防科学技术大学, 2011 (Liu Shijie. Investigations on the Structure, Rotating Mode and Lasting Mechanism of Continuous Rotating Detonation Wave. Changsha: National University of Defense Technology, 2012 (in Chinese))
[27]
刘世杰, 孙明波, 林志勇等. 钝头体激波诱导振荡燃烧现象的数值模拟. 力学学报, 2010, 42(4): 597-605 (Liu Shijie, Sun Mingbo, Lin Zhiyong, et al. Numerical research on blunt body shock-induced oscillating combustion. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 597-605 (in Chinese))
[28]
Liu J, Liu Y, Liu R. New uncoupling finite volume method for simulation of non-equilibrium flow and its application to supersonic combustion instability. Transaction of Nanjing University of Aeronautics & Astronautics, 2013, 30(5)
[29]
刘瑜, 刘君, 白晓征. 基于新型非结构有限体积解耦算法的激波诱导燃烧数值模拟. 国防科技大学学报, 2011, 33(6): 139-143 (Liu Yu, Liu Jun, Bai Xiaozheng. Numerical simulation of shock-induced combustion with a new uncoupled algorithm in unstructured finite volume method. Journal of National University of Defense Technology, 2011, 33(6): 139-144 (in Chinese))
[30]
Harten A, Engquist B, Osher S. Uniformly high order essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987, 71(2): 231-303
[31]
Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115(1): 200-212
[32]
Jiang GS, Shu CW. Efficient implementation of weighted ENO Schemes. Journal of Computational Physics, 1996, 126(1): 202-228
[33]
Choi J-Y, Jeung I-S, Yoon Y. Computational fluid dynamics algorithns for unsteady shock-induced combustion, part 1: validation. AIAA Journal, 2000, 38(7): 1175-1185.
[34]
Kirk BS, Stognery RH, Olivery TA, et al. Recent advancements in fully implicit numerical methods for hypersonic reacting flows. AIAA 2013-2559, 2013
[35]
Bussing TRA, Murman EM. A finite volume method for the calculation of compressible chemically reaction flows. AIAA-85-0331, 1985
[36]
杨顺华, 乐嘉陵, 赵慧勇等. 煤油超然冲压发动机三维大规模并行数值模拟. 计算物理, 2009, 26(4): 534-540 (Yang Shunhua, Le Jialing, Zhao Huiyong, et al. Three-dimensional massively parallel numerical simulation of kerosene-fueled scramjet. Chinese Journal of Computational Physics, 2009, 26(4): 534-540 (in Chinese))
[37]
Zhong X. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows. Journal of Computational Physics, 1996, 128(1): 19-31
[38]
王昌建, 徐胜利. 直管内胞格爆轰的基元反应数值研究. 爆炸与冲击, 2005, 25(5): 405-416 ( Wang Changjian, Xu Shengli. Numerical study on cellular detonation in a straight tube based on detailed chem ical reaction model. Explosionand Shock Waves, 2005, 25(5): 405-416 (in Chinese))
[39]
Mevel R, Davidenko D, Austin JM, et al. Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogene-oxygene-diluent mixtures. International Journal of Hydrogen Energy, 2014, 39(11): 6044-6060