全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

高温仪器化压入测试中热接触对位移测量漂移的影响

DOI: 10.6052/0459-1879-14-297, PP. 270-278

Keywords: 仪器化压入,高温,接触热传导,热膨胀,位移漂移

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于对室温压头和热试样接触后传热过程的分析,重点研究热接触引起的压头基托热膨胀对高温仪器化压入测试中位移测量漂移的影响.首先,通过热传导理论分析,获得热接触后基托内温度场分布的解析解,进而研究基托热膨胀引起的位移测量漂移量;然后,建立有限元分析模型,数值模拟高温仪器化压入过程,验证理论模型的准确性.研究发现,压头与热试样接触面间的热传导性质显著影响基托内的温度场分布;对于不同材料的试样,接触面间传热性能不同,基托的热膨胀量差异可以达到几个数量级.研究结果有助于优化高温压入测试程序,提高测试的可靠性.

References

[1]  张泰华. 微/纳米力学测试技术及其应用——仪器化压入的测量、分析、应用及其标准化.北京: 科学出版社, 2013 (Zhang Taihua. Micro/nano-mechanics Testing Technology and Its Application —— Measurement, Analysis, Application and Standardization of Instrumented Indentation. Beijing: Science Press, 2013 (in Chinese))
[2]  Schuh CA, Packard CE, Lund AC. Nanoindentation and contact-mode imaging at high temperatures. Journal of Materials Research, 2006, 21(efeq3):725-736
[3]  Trenkle JC, Packard CE, Schuh CA. Hot nanoindentation in inert environments. Review of Scientific Instruments, 2010, 81(7): 073901
[4]  Lee H, Chen Y, Claisse A, et al. Finite element simulation of hot nanoindentation in vacuum. Experimental Mechanics, 2013, 53(efeq7):1201-1211
[5]  Everitt NM, Davies MI, Smith JF. High temperature nanoindentation ——- the importance of isothermal contact. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2011, 91(7-9):1221-1244
[6]  Guillonneau G, Kermouche G, Bec S, et al. A simple method to minimize displacement measurement uncertainties using dynamic nanoindentation testing. Tribology International, 2014, 70:190-198
[7]  Korte S, Stearn RJ, Wheeler JM, et al. High temperature microcompression and nanoindentation in vacuum. Journal of Materials Research, 2012, 27(01): 167-176
[8]  Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Review of Scientific Instruments, 2013, 84(efeq4): 045103
[9]  Wheeler JM, Brodard P, Michler J. Elevated temperature, in situ indentation with calibrated contact temperatures. Philosophical Magazine, 2012, 92(25-27):3128-3141
[10]  Wheeler JM, Michler J. Invited Article: Indenter materials for high temperature nanoindentation. Review of Scientific Instruments, 2013, 84(efeq10):101301
[11]  谈庆明.量纲分析.合肥: 中国科学技术大学出版社, 2005 (Tan Qingming. DimensionalAnalysis. Hefei: University of Science and Technology of China Press, 2005 (in Chinese))
[12]  Cui JB, Amtmann K, Ristein J, et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy. Journal of Applied Physics, 1998, 83(12): 7929-7933
[13]  Beake BD, Smith JF. High-temperature nanoindentation testing of fused silica and other materials. Philosophical Magazine A, 2002, 82(10): 2179-2186
[14]  岳丹婷. 工程热力学和传热学. 大连: 大连海事大学出版社, 2009 (Yue Danting. Engineering Thermodynamics and Heat Transfer. Dalian: Dalian Maritime University Press, 2009 (in Chinese))
[15]  Chrobak D, Kim KH, Kurzydlowski KJ, et al. Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Applied Physics Letters, 2013, 103(7): 072101
[16]  Micro Star Technologies.
[17]  Bhakhri V, Wang J, Ur-rehman N, et al. Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures. Journal of Materials Research, 2012, 27(1): 64-74
[18]  Carderelli F. Materials Handbook: A Concise Desktop Reference. New York: Springer, 2008
[19]  Korte S, Clegg WJ. Micropillar compression of ceramics at elevated temperatures. Scripta Materialia, 2009, 60(9): 807-810
[20]  Agilent Technologies. Localized high temperature stage user's guide .Part number G2A-13192-? Agilent Technologies, Inc. 201
[21]  Abuzeida OM, Alnumanb N. Thermal contact conductance of elastically deforming nominally flat surfaces using fractal geometry. Industrial Lubrication and Tribology , 2013, 65(efeq6): 390-398
[22]  Persson BNJ, Lorenz B, Volokitin AI. Heat transfer between elastic solids with randomly rough surfaces. European Physical Journal E, 2010, 31(efeq1): 3-24
[23]  Bahrami M, Culham JR, Yananovich MM, et al. Review of thermal joint resistance models for nonconforming rough surfaces. Applied Mechanics Reviews, 2006, 59(1-6):1-12
[24]  Johnson KL. Contact Mechanics. Cambridge :Cambridge University Press, 1985
[25]  Crank J. The Mathematics of Diffusion. Clarendon: Oxford, 1979
[26]  David WH, Necati OM. Heat Conduction. John Wiley and Sons, 1979
[27]  Adelbert Phillo Mills. Materials of Construction: Their Manufacture and Properties. John Wiley and Sons, 1979
[28]  Vin Karola.
[29]  Material Properties Database.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133