全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2011 

海岛棉pepc基因的克隆及序列和表达分析(英文)

DOI: 1002-7807(2011)01-0080-10, PP. 80-89

Keywords: pepc,克隆,差异表达,定量PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvatecarboxylase)对植物生理功能行使重要的调节作用。本研究根据NCBI已公布的EST序列利用RACE和genomewalking技术从海岛棉品种7124中克隆了一个新的pepc基因,命名为Gb.pepc3。该序列全长3259bp,含有一个2910bp的开放阅读框,编码969个氨基酸,推测分子量为110.7kd,等电点为6.08I。对Gb.pepc3蛋白的同源性比对和系统进化树分析显示,Gb.pepc3与已报道的其他植物的pepc相似性很高,属于C3型pepc。荧光定量PCR结果显示Gb.pepc3在棉花各组织中广泛存在,其中在胚中表达量最高,在纤维中表达量较低。在棉花发育各个阶段Gb.pepc3表达量不同,海岛棉在开花后15天Gb.pepc3表达量达到高峰期,而陆地棉开花后20天Gb.pepc3表达量达到高峰期。海岛棉和陆地棉间表达量差异明显。

References

[1]  GRULA J W, Hudspeth R L. The phosphoenolpyruvate carboxylase gene family of maize[M]. // Key G L, McIntosh L. Plant Gene Systems and Their Biology. NewYork: Liss, l987: 207-216.
[2]  IZUI K, Ishijima S, Yamaguchi Y, et al. Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize[J]. Nucleic Acids Research,1986,14: 1615-1628.
[3]  MATSUKO, Matsuoka M, Minami E. Complete structure of the gene for phosphoenolpyruvate carboxylase from maize[J]. European Journal of Biochemistry, 1989, 181: 593-598.
[4]  HUDSPETH R L, Grula J W. Structure and expression of the maize gene encoding the phosphoenolpyruvte carboxylse isozyme involved in C4 photosynthesis[J]. Plant Mol Bio, 1989, 12: 579-589.
[5]  KAWAMURA T, Shigesada K, Yanagisawa S, et al. Phosphoenolpyruvate carboxylase prevalent inmaize roots: Isolation of cDNA clone and its use for analysis of the gene andthe gene expression[J]. The Journal of Biochemistry, 1990,107: 165-68.
[6]  KAWAMURA T, Shigesada K, Toh H, et al. Molecular evolution of phosphoenolpyruvate carboxylase for C3 photosynthesis in maize: Comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function[J]. The Journal of Biochemistry, 1992, 112:147-154.
[7]  HAO Nai-bin, Ge Qiao-ying, Du Wei-gung. Advances in the study of the photosynthetic physiology in breeding high photosynthetic efficiency soybean[J]. Chinese Bulletin of Botany, 1991, 8(2): 13-20.
[8]  DENNIS D T, Turpion D H. Plant Physiology, biochemistry and molecular biology[M]. Essex, England: Longman Sci Tech, 1990: 274-298.
[9]  KU M S, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nature Biotech, 1999, 17: 76-80.
[10]  KU M S, Cho D, Ranade U, et al. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enrymes[M].//Sheehy J E, Mitchell P L, Hardy B. Redesigning of rice photosynthesis to increase yield. Amsterdam, Netherlands: Elsvier Science Publishers, 2000: 193-204.
[11]  ZHANG Fang, Chi Wei-Jin, Cheng Zhe, et al. Molecular cloning of C4 pepc of sorghum and cultivation of transgenes rice[J]. Chinese Science Bulletin, 2003, 48: 1542-1546.
[12]  FUJITA N, Miwa T, Ishijima S. The primary structure of phosphoenolpyruvate carboxylase of escherichia coli. nucleotide sequence of the pepc gene and deduced amino acid sequence[J]. The Journal of Biochemistry, 1984, 95:909-916.
[13]  QIAO Zhi-xin, Liu Jin-yuan. Molecular cloning and characterization of a cotton phosphoenolpyruvate carboxylase gene[J]. Progress in Natural Science, 2008, 18: 539-545.
[14]  ZHAO Gui-lan, Chen Jin-qing, Yi Ai-ping. Transgenic soybean lines harbouring anti-pep gene express super-high oil content[J]. Molecular Plant Breeding, 2005, 3(6): 792-796.
[15]  ZHANG Yong, Fu Shao-hong, Zhang Ru-quan, et al. Cloning of the PEPC gene and construction of a seed-specific ihpRNA expression vector in Brassica napus L.[J] Acta Laser Biology Sinica,2007, 16(3): 315-321.
[16]  LATZKO E, Kelly G J. The many-faced function of phosphoenolpyruvate carboxylase in C3 plants[J]. Physiologie Végétale, 1983, 21: 805-815.
[17]  LIU Y D, Li J J, Wang F W. A newly proposed mechanism for arginine-assisted proteinre folding not inhibiting soluble oligomers although promoting a correct structure[J]. Protein Expression and Purification, 2007, 51: 235-242.
[18]  ARAKAWA T, Ejima D, Kita Y, et al. Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs[J]. Biochim Biophys Acta, 2006, 1764: 1677-1687.
[19]  ARAKAWA T, Tsumoto K. The effects of arginine on refolding of aggregated proteins: Not facilitate refolding, but suppress aggregation[J]. Biochem Biophys Res Commun, 2003, 304: 148- 152.
[20]  CUSHMAN J C, Meyer G, Michalowski C B, et al. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant[J]. The Plant Cell, 1989, 1: 715-725.
[21]  Pardo J M, Reddym P, YANG S, et al. Stress signaling through Ca2+/calmodulin dependent protein phosphatase calcineurin mediates salt adaptation in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 9681-9686.
[22]  DONG L Y, Masuda T, Kawamura T, et al. Cloning, expression, and characterization of aroot-form phosphoenolpyruvate carboxylase from Zea mays:comparison with the C4-form enzyme[J]. Plant and Cell Physiol, 1998, 39: 865-873.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133