全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2012 

陆地棉体细胞胚胎发生过程中的细胞外基质研究

DOI: 1002-7807(2012)02-0167-09, PP. 167-175

Keywords: 棉花,体细胞胚胎发生,细胞外基质,扫描电镜,透射电镜

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究棉花体细胞胚胎发生对于促进棉花基因工程育种具有重要意义。利用扫描电镜和透射电镜对陆地棉体细胞胚胎发生过程的研究发现,细胞外基质在棉花体细胞胚胎发生的不同阶段呈现出有规律的动态变化。当普通愈伤组织细胞发育成胚性愈伤组织时,细胞外基质就会出现;随着原胚的形成,细胞外基质就会形成发达的网络状结构;随着胚状体的进一步形成和发育,细胞外基质则逐渐降解。在愈伤组织和非胚性愈伤组织中,始终未发现细胞外基质。结果表明,细胞外基质与体细胞胚胎发生能力关系密切,是原胚形成的重要标记。

References

[1]  SUNILKUMAR G, Campbell L M, Puckhaber L, et al. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol[J]. Proc Natl Acad Sci USA, 2006, 103: 18054-18059.
[2]  WU Jia-he, Zhang Xian-long, Nie Yi-chun, et al. Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons[J]. In vitro Cell Dev Biol Plant, 2004, 40: 371-375.
[3]  WILKINS T A, Rajasekaran K, Anderson D M. Cotton biotechnology[J]. CRC Crit Rev Plant Sci, 2000, 19: 511-550.
[4]  SAKHANOKHO H F, Ozias-Akins P, May O L, et al. Induction of somatic embryogenesis and plant regeneration in select georgia and Pee Dee cotton lines[J]. Crop Sci, 2004, 44: 2199-2205.
[5]  DAVIDONIS G H, Hamilton R H. Plant regeneration from callus tissues of Gossypium hirsutum L.[J]. Plant Sci Lett, 1983, 32:89-93.
[6]  SHOEMAKER R C, Couche L J, Galbraith D W. Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.)[J]. Plant Cell Rep, 1986, 3: 178-181.
[7]  于 娅,刘传亮,马峙英,等.陆地棉中棉所24胚性愈伤组织的诱导及植株再生[J].西北植物学报,2004,24(2):306-310. YU Ya, Liu Chuan-liang, Ma Zhi-ying, et al. Embryogenic callus induction and plant regeneration from "CCRI 24"[J]. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(2): 306-10.
[8]  NOLAN K E, Irwanto R R, Rose R J. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures[J]. Plant Physiol, 2003, 133:218-230.
[9]  CHAPMAN A, Blervacq A S, Tissier J P, et al. Cell wall differentiation during early somatic embryogenesis in plants. I. Scanning and transmission electron microscopy study on embryos originating from direct, indirect, and adventitious pathways[J]. Can J Bot, 2000, 78: 816-823.
[10]  VERDEIL J L, Hocher V, Huet C. Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence[J]. Ann Bot, 2001, 88: 9-18.
[11]  KONIECZNY R, Bohdanowicz J, Czaplicki A Z, et al. Extracellular matrix surface network during plant regeneration in wheat anther culture[J]. Plant Cell Tissue Organ Cult, 2005, 83:201-208.
[12]  NAMASIVAYAM P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue[J]. Plant Cell Rep, 2006, 25: 887-895.
[13]  ROBERTS K. The plant extracellular matrix: in a new expansive mood[J]. Curr Opin Cell Biol, 1994, 6: 688-694.
[14]  DUBOIS T, Guedira M, Diop A, et al. SEM characterization of an extracellular matrix around somatic proembryos of roots of Cichorium[J]. Annals Bot, 1992, 70: 119-124.
[15]  BOBáK M,?amaj J, Hlinkova E, et al. Extracellular matrix in early stages of direct somatic embryogenesis in leaves of Drosera spathulata[J]. Biol Plant, 2003, 47: 161-162.
[16]  ?AMAJ J, Bobák M, Blehova A, et al. Developmental SEM observations on an extracellular matrix in embryogenic calluses of Drosera rotundifolia and Zea mays[J]. Protoplasma, 1995, 186: 45-49.
[17]  OVE KA M, Bobák M S. Structural diversity of Papaver somniferum L. cell surfaces in vitro depending on particular steps of plant regeneration and morphogenetic program[J]. Acta Physiol Plant, 1999, 21: 117-126.
[18]  RUMYANTSEVA N I,?amaj J, Ensikat H J, et al. Changes in the extracellular matrix surface network during cyclic reproduction of proembryogenic cell complex in the Fagopyrum tataricum (L.) Gaertn callus[J]. Dokl Biol Sci, 2003, 391: 375-378.
[19]  BOBáK M,?amaj J, Pretova A, et al. The histological analysis of indirect somatic embryogenesis on Drosera spathulata Labill[J]. Acta Physiol Plant, 2004, 26: 353-361.
[20]  MURASHIGE T, Skoog F A. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiol Plant, 1962, 15: 473-497.
[21]  SPURR A R. Low viscosity epoxy resin embedding medium for electron microscopy[J]. J Ultrastruct Res, 1969, 26: 31-43.
[22]  REYNOLDS E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy[J]. J Cell Biol, 1963, 17: 208-211.
[23]  ZENG Fan-chang, Zhang Xian-long, Jin Shuang-xia, et al. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell[J]. Plant Cell Tiss Organ Cult, 2007, 90: 63-70.
[24]  ZENG Fan-chang, Zhang Xian-long, Zhu Long-fu, et al. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray[J]. Plant Mol Biol, 2006, 60:167-183.
[25]  SHANG Hai-hong, Liu Chuan-liang, Zhang Chao-jun, et al. Histological and ultrastructural observation reveals significant cellular differences between Agrobacterium transformed embryogenic and non-embryogenic calli of cotton[J]. J Integr Plant Biol, 2009, 51: 456-465.
[26]  MISHRA R, Wang Huai-yu, Yadav N R, et al. Development of a highly regenerable elite Acala cotton(Gossypium hirsutum cv. Maxxa) - a step towards genotype-independent regeneration[J]. Plant Cell Tissue Organ Cult, 2003, 73: 21-35.
[27]  ?AMAJ J, Balu?ka F, Bob?仳k M, et al. Extracellular matrix surface network of embryogenic units of friable maize callus contains rabinogalactan-proteins recognized by monoclonal antibody JIM4[J]. Plant Cell Rep, 1999, 18: 369-374.
[28]  WYATT S E, Carpita N C. The plant cytoskeleton-cell wall continuum[J]. Trends cell Biol, 1993, 3: 413-417.
[29]  REUZEAU C, Pont-Lezica R F. Comparing plant and animal extracellular matrix-cytoskeleton connections—are they alike?[J]. Protoplasma, 1995, 186: 113-121.
[30]  FLOWER J E, Quatrano R S. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall[J]. Annu Rev Cell Dev Biol, 1997, 13: 697-743.
[31]  CHAPMAN A, Blervacq A S, Vasseur J, et al. Removal of the fibrillar network surrounding Cichorium somatic embryos using cytoskeleton inhibitors: analysis of proteic components[J]. Plant Sci, 2000, 150: 103-114.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133