全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2013 

一个棉花果糖-1,6-二磷酸酶基因的克隆与表达特征

DOI: 1002-7807(2013)06-0549-08, PP. 549-556

Keywords: 棉花,纤维发育,果糖-1,6-二磷酸酶,克隆,表达

Full-Text   Cite this paper   Add to My Lib

Abstract:

棉纤维的正常发育需要大量的蔗糖供应。果糖-1,6-二磷酸酶(FBP)是植物蔗糖合成途径中的关键酶,研究FBP将有助于揭示复杂的棉纤维发育分子机理,为纤维品质改良提供优异的基因资源。本研究以一个在陆地棉im纤维不成熟突变体和遗传标准系TM-1纤维发育中显著差异表达的EST序列(GenBankNo.ES795598)为探针,通过电子克隆方法,结合cDNA及基因组全长基因PCR扩增、测序验证,获得一个棉花细胞质果糖-1,6-二磷酸酶GhFBP基因(GenBankNo.KF305323)。该基因ORF全长1026bp,编码341个氨基酸,含有12个外显子,11个内含子。GhFBP在二倍体棉种中含1个拷贝,在四倍体棉种中含2个拷贝,A、D两个亚组中各一个。利用SNP标记将GhFBP在异源四倍体中的一个拷贝定位于D2(Chr.14)染色体上。Q-PCR分析表明,该基因在纤维组织中优势表达,在其他组织中表达较低。GhFBP在开花后19d的纤维组织中表达水平迅速增高。在次生壁发育早期的19、22DPA纤维组织中,该基因在TM-1中的转录本显著高于im纤维不成熟突变体材料,推测GhFBP对纤维次生壁发育早期的纤维品质形成有重要作用。

References

[1]  SERRATO A J, de Dios Barajas-Lopez J, Chueca A, et al. Changing sugar partitioning in FBPase-manipulated plants[J]. Journal of Experimental Botany, 2009, 60(10):2923-2931.
[2]  CSEKE C, Buchanan B B. Regulation of the formation and utilization of photosynthate in leaves[J]. Biochemica et Biophysi- ca Acta, 1986, 853(1):43-63.
[3]  STITT M. Fructose-2, 6-bisphosphate as regulatory metabolite in plants[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1990(41):153-185.
[4]  DAIE J. Cytosolic fructose-1, 6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway[J]. Photosynthesis Research, 1993, 38(1):5-14.
[5]  HUBER S C, Huber J L. Role of sucrose-phosphate synthase in sucrose metabolism in leaves[J]. Plant Physiology, 1992, 99(4):1275-1278.
[6]  ZIMMERMANN G, Kelly G J, Latzko E. Purification and properties of spinach leaf cytoplasmic fructose-1,6-bisphospha tase[J]. Journal Biological Chemistry, 1978, 253(17):5952-5956.
[7]  ANDERSON L E, Yousefzai R, Ringenberg M R, et al. Both chloroplastic and cytosolic fructose bisphosphatase isozymes are present in the pea leaf nucleus[J]. Plant Science, 2004, 166(3):721-730.
[8]  HUR Y K, Unger E A, Vasconcelos A C. Isolation and characterization of a cDNA encoding cytosolic fructose-1, 6-bisphos-phate from spinach[J]. Plant Molecular Biology, 1992, 18(4):799-802.
[9]  JANG H, Lee S, Lee Y, et al. Purification and characterization of a recombinant pea cytosolic fructose-1, 6-bisphosphatase[J]. Protein Expression and Purification, 2003, 28(1):42-48.
[10]  KHAYAT E, Harn C, Daie J. Purification and light-dependent molecular modulation of the cytosolic fructose-1, 6-bisphosp- hatase in sugar beet leaves[J]. Plant Physiology, 1993, 101(1):57-64.
[11]  STRAND A, Zrenner R, Trevanion S, et al. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana[J]. Plant Journal, 2000, 23(6):759-770.
[12]  ZRENNER R, Krause K P, Apel P, et al. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield[J]. Plant Journal, 1996, 9(5):671-681.
[13]  WU Yao-ting, Liu Jin-yuan. A modified hot borate method for efficient isolation of total RNA from different cotton tissues[J]. Cotton Science, 2004, 16(2): 67-71.
[14]  蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA[J]. 棉花学报, 2003, 15(3):166-167.
[15]  JIANG Jian-xiong, Zhang Tian-zhen. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method[J]. Cotton Science, 2003, 15(3):166-167.
[16]  PATERSON A H, Brubaker C L, Jonathan F. Rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter, 1993, 11(2): 122-127.
[17]  PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9):e45.
[18]  PATERSON A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429):423-427.
[19]  ZHAO Liang, Lv Yuan-da, Cai Cai-ping, et al. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information[J]. BMC Genomics, 2012,13: 539.
[20]  WILKINS T A, Jernstedt J A. Molecular genetics of developing cotton fibers[M] // BASRA A S. Cotton fibers: developmental biology, quality improvement, and textile processing. New York: Food Products Press, 1999: 231-269.
[21]  THORBJORNSEN T, Asp T, Jorgensen K, et al. Starch biosynthesis from triose-phosphate in transgenic potato tubers expressing plastidic fructose-1,6-bisphosphatase[J]. Planta, 2002, 214(4):616-624.
[22]  CHO M H, Jang A, Bhoo S H, et al. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants[J]. Photosynthesis Research, 2012, 111(3):261-268.
[23]  LEE S K, Jeon J S, Bornke F, et al. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa)[J]. Plant Cell and Environment, 2008, 31(12):1851-1863.
[24]  TAMOI M, Hiramatsu Y, Nedachi S, et al. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels[J]. Photosynthesis Research, 2011, 108(1):15-23.
[25]  王 诚. 棉花不成熟纤维突变基因(im)的定位及突变体纤维次生壁加厚期表达谱分析[D]. 南京:南京农业大学,2013.
[26]  WANG Cheng. Mapping of immature fiber mutant gene and expression profiling during fiber secondary cell wall development using immature fiber mutant (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2013.
[27]  KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biolology, 2004,7(3):235-246.
[28]  吴 霞, 李燕娥, 上官小霞. 棉纤维发育相关转录因子的研究进展[J]. 棉花学报, 2013,25(3): 269-277.
[29]  WU Xia, Li Yan-e, Shangguan Xiao-xia. Progress in studies on transcription factors related to cotton fiber development[J]. Cotton Science, 2013,25(3): 269-277. 
[30]  BASRA A S, Malik C P. Development of cotton fiber[M]. International Review Cytology, 1984, 89: 65-113.
[31]  吕芬妮. 陆地棉纤维表达蛋白基因(GhCFE)的特征与功能分析及其分子机制初步研究[D].南京:南京农业大学,2013.
[32]  LV Fen-ni. Characterization and functional analysis of cotton fiber expressed protein and preliminary study of its molecular mechanisms[D]. Nanjing: Nanjing Agricultural University, 2013.
[33]  武耀廷,刘进元. 一种高效提取棉花不同组织总RNA的热硼酸改良法[J]. 棉花学报, 2004, 16(2): 67-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133