全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2013 

哈克尼西棉细胞质雄性不育系和保持系花发育不同时期miR156及靶基因TBCC的研究

DOI: 1002-7807(2013)06-0478-08, PP. 478-485

Keywords: 棉花,细胞质雄性不育,miR156,TBCC

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究以棉花细胞质雄性不育系和保持系不同发育时期的花蕾为材料分析miR156和预测的靶基因TBCC(TublinbindingcofactorC)在花蕾中的表达水平及相互关系,并从棉花中克隆TBCC,探讨TBCC在棉花花粉发育过程中的作用。结果表明,不育系和保持系花蕾中miR156表达量随花药发育进程而显著增加,TBCC的表达量在两材料花药发育不同阶段均存在显著差异,其中在保持系中随着花药发育逐渐降低,而在不育系中该基因的表达水平一直维持在较低水平,推测不育性状可能与TBCC的表达有关。克隆得到TBCC基因的cDNA全长序列,命名为GhTBCC(基因登录号KC488331)。其CDS长度为1713bp,编码570个氨基酸,分子量为62.79kD,含有保守的TBCC和CARP结构域。GhTBCC与杨树、蓖麻、拟南芥的氨基酸序列相似性分别为81%、80%、77%。

References

[1]  BUDAR F, Touzet P, Paepe D R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited[J]. Genetica, 2003,117 (1): 3-16.
[2]  MEIS D L, Arruda A P, Costa D M R, et al. Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+[J].The Journal Biological Chemistry,2006, 281(24): 16384-16390.
[3]  VENKATRAMAN M, Konga D, Peramaiyan R, et al. Reduction of mitochondrial oxidative damage and improved mitochondrial efficiency by administration of crocetin against benzo[a] pyrene induced experimental animals[J]. Biological Pharmaceutical Bulletin,2008, 31(9): 1639-1645.
[4]  朱云国, 张绍伟, 王晓玲, 等. 哈克尼西棉细胞质雄性不育系小孢子发生的超微结构观察[J]. 棉花学报, 2005, 17(6):382-383.
[5]  ZHU Yun-guo, Zhang Shao-wei, Wang Xiao-ling, et al. Ultrastructural observations of the microsporogenesis in G. harknessii cytoplasmic male-sterile cotton[J]. Cotton Science, 2005, 17(6): 382-383.
[6]  段中鑫, 覃玉蓉, 夏新莉, 等. 超量表达胡杨peu-MIR156j基因增强拟南芥耐盐性[J]. 北京林业大学学报,2011,33(6): 1-7.
[7]  DUAN Zhong-xin, Qin Yu-rong, Xia Xin-li, et al. peu-miR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University. 2011, 33(6):1-7.
[8]  LOPEZ-FANARRAGA M, Avila J, Guasch A, et al. Review: Postchaperonin tubulin folding cofactors and their role in microtubule dynamics[J]. Journal Structure Biology, 2002, 135(2): 219-229
[9]  STEINMETZ M O, Akhmanova A. Capturing protein tails by CAP-Gly domains[J]. Trends Biochemical Sciences, 2009, 33(11): 535-545.
[10]  KIRIK V, Mathur J, Grini P E, et al. Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17): 1519-1523. 
[11]  BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
[12]  FABBRI M, Garzon R, Cimmino A, et al. MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 10805-10810.
[13]  MURCHISON E P, Partridge J F, Tam O H, et al. Characteriza- tion of Dicer-deficient murine embryonic stem cells[J]. Procee- dings of the National Academy of Sciences of the United States of America, 2005, 102(34): 12135-12140.
[14]  邢朝柱, 郭立平, 吴建勇, 等. 转基因抗虫三系杂交棉-中棉所83 [J]. 中国棉花,2012, 39(7): 39.
[15]  XING Chao-zhu, Guo Li-ping, Wu Jian-yong, et al. Transgenic insect-resistance hybrid cotton based on cytoplasmic male-steri- lity system, CCRI83 [J].China cotton, 2012,39(7): 39.
[16]  魏 娟. 哈克尼西棉细胞质雄性不育系和保持系microRNA研究[D]. 北京:中国农业科学院,2010.
[17]  WEI Juan. Research of microRNA between Gossypium harknessii cytoplasmic male sterile line and its maintainer line [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[18]  FRANCO-ZORRILLA J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity [J]. Nature Genetics, 2007, 39(8): 1033-1037.
[19]  SCHWAB R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Development Cell, 2005, 8(4): 517-527.
[20]  WANG Jia-wei, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana [J]. Cell, 2009, 138(4): 738-749.
[21]  FERRARIO S, I mmink R G H, Angenent G C. Conservation and diversity in flower land[J]. Current Opinion in Plant Biology, 2004, 7(1): 84-91.
[22]  WU Guang, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis [J]. Cell, 2009, 138(4):750-759.
[23]  XIE Ka-bin, Wu Cong-qing, Xiong Li-zhong. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice [J]. Plant Physiology, 2006, 142(1): 280-293.
[24]  WU Guang, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3 [J]. Development, 2006, 133(18): 3539-3547.
[25]  XING Shu-ping, Salinas M, Hohmann S, et al. miR156-targeted and nontargeted SBP-Box transcription factors act in concert to secure male fertility in Arabidopsis [J]. The Plant Cell, 2010, 22(12):3935-3940.
[26]  NAYA L, Khan G A, Sorin C, et al. Cleavage of a non-conserved target by a specific miR156 isoform in root apexes of Medicago truncatula[J]. Plant Signaling & Behavior, 2010, 5(3): 328-331.
[27]  GARCIA-MAYORAL M F, Castano R, Fanarraga M L, et al. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction [J]. PLOS ONE , 2011, 6(10): e25912.
[28]  BARTOLINI F, Bhamidipati A, Thomas S, et al. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C[J]. Journal of Biological Chemistry, 2002, 277(17): 14629-14634.
[29]  PANG Ming-xiong, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.) [J]. Genome Biology, 2009, 10(11): R122.
[30]  WEI Li-qin, Yan Long-feng, Wang Tai. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa [J]. Genome Biology, 2011, 12(6): R53.
[31]  JOHN P, Vogel D F G, Todd C, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282): 763-768.
[32]  LEVINGS C S, Pring D R. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male strile maize [J]. Science, 1976,193(4248): 158-160.
[33]  HANSON M R, Bentolila S. Interaction of mitochondrial and nuclear genes that affect male gametophyte development[J]. Plant Cell, 2004,16 (supple1): S154-S169.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133