Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends Plant Sci, 2005, 10(2): 79-87.
[2]
Souer E, Van Houwelingen A, Kloos D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2):159-170.
[3]
Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell, 1997, 9(6): 841-857.
[4]
Riechmann J L, Ratcliffe O J. A genomic perspective on plant transcription factors[J]. Curr Opin Plant Biol, 2000, 3(5): 423-434.
[5]
Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247.
[6]
Shang Haihong, Li Wei, Zou Changsong, et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns[J]. J Integr Plant Biol, 2013, 55(7): 663-676.
[7]
Ernst H A, Olsen A N, Larsen S, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. EMBO Rep, 2004, 5(3): 297-303.
[8]
Kim S G, Lee A K, Yoon H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. Plant J, 2008, 55(1): 77-88.
[9]
Meng Chaomin, Cai Caiping, Zhang Tianzhen, et al. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.[J]. Plant Sci, 2009, 176(3): 352-359.
[10]
Shah S T, Pang Chaoyou, Fan Shuli, et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J]. Gene,2013, 531(2): 220-234.
[11]
Shah S T, Pang Chaoyou, Hussain Anwar, et al. Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.[J]. Plant Cell Tiss Organ Cult, 2014, 117: 167-186.
Song Guoli, Cui Rongxia, Wang Kunbo, et al. A rapid improved CTAB method for extraction of cotton genomic DNA[J]. Acta Gossypii Sinica , 1998, 10(5): 273-275.
[14]
Gietz R D, Schiestl R H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2(1): 1-4.
Zheng Xingnan, Chen Bo, Lu Guojun, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochem Biophys Res Commun, 2009, 379(4): 985-989.
[18]
Lu Pingli, Chen Naizhi, An Rui, et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Mol Biol, 2007, 63(2): 289-305.
[19]
He Xinjian, Mu Ruiling, Cao Wanhong, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. Plant J, 2005, 44(6): 903-916.
[20]
Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2481-2498.
[21]
Bu Qingyun, Jiang Hongling, Li Changbao, et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses[J]. Cell Res, 2008, 18(7): 756-767.
[22]
Rauf M, Arif M, Dortay H, et al. ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription[J]. Embo Rep, 2013, 14(4): 382-388.
[23]
Christianson J A, Wilson I W, Llewellyn D J, et al. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment[J]. Plant Physiol, 2009, 149(4): 1724- 1738.
[24]
Hu Honghong, Dai Mingqiu, Yao Jialing, et al. Overexpressing a NAM, ATAF, and CUC(NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci, 2006 , 103(35): 12987-12992.
[25]
Hu Honghong, You Jun, Fang Yujie, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol, 2008, 67(1-2): 169-181.
[26]
Lin Ruiming, Zhao Wensheng, Meng Xiangbing, et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Sci, 2007, 172(1): 120-130.
[27]
Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant J, 2010, 61(5): 804-815.
[28]
Yokotani N, Ichikawa T, Kondou Y, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009, 229(5): 1065-1075.
[29]
喻树迅,张存信,范术丽,等. 中国短季棉育种学[M]. 北京: 科学出版社,2007.
[30]
Yu Shuxun, Zhang Cunxin, Fan Shuli, et al. The breeding of short-season cotton in China[M]. Beijing: Science Press, 2007.
[31]
Yu Shuxun, Song Meizhen, Fan Shuli, et al. Biochemical genetics of short-season cotton cultivars that express early maturity without senescence[J]. J Integr Plant Biol, 2005, 47(3): 334-342.
[32]
Wright P R. Premature senescence of cotton(Gossypium hirsutum L.) - predominantly a potassium disorder caused by an imbalance of source and sink[J]. Plant Soil, 1999, 211(2): 231-239.