全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2014 

陆地棉主要农艺与纤维品质性状的双列杂交分析

DOI: 1002-7807(2014)01-0025-09, PP. 25-33

Keywords: 陆地棉,遗传效应,遗传相关,杂种优势

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用加性-显性与环境互作的遗传模型(ADE模型),分析8个陆地棉亲本及其F1在不同环境下的农艺和纤维品质性状,在估算遗传方差分量、遗传效应的基础上,分析各类性状间的遗传相关性,并预测F1和F2的杂种优势,为棉花杂种优势利用和新品种选育提供了较有价值的信息。研究表明,农艺与纤维品质性状的遗传主要受加性、显性和加性与环境互作效应控制。遗传相关分析表明,皮棉产量与纤维品质性状的显性相关系数值较大,利用杂种优势在早期世代可以得到协同改良,纤维品质性状间易实现协同改良。杂种优势分析表明,F1和F2的皮棉产量均具有显著的超亲优势,纤维品质性状的杂种优势不明显。

References

[1]  潘家驹. 棉花育种学[M]. 北京: 中国农业出版社, 1998: 273-295.
[2]  Pan Jiaju. Cotton breeding[M]. Beijing: China Agriculture Press, 1998: 273-295.
[3]  周有耀. 陆地棉产量及纤维品质性状的遗传分析(综述)[J]. 北京农业大学学报, 1988, 14(2): 135-141.
[4]  Zhou Youyao. Genetic analysis for yield and fiber traits in upland cotton (Summarized)[J]. Journal of Beijing Agricultural University, 1988, 14(2): 135-141.
[5]  王国印. 陆地棉数量性状遗传研究与进展[J]. 中国棉花, 1994, 21(3): 5-7.
[6]  Wang Guoyin. Study and advancing of quantitative traits genetics in upland cotton[J]. China Cotton, 1994, 21(3): 5-7.
[7]  孙济中, 刘金兰, 张金发. 棉花杂种优势的研究和利用[J]. 棉花学报, 1994, 6(3): 135-139.
[8]  Sun Jizhong, Liu Jinlan, Zhang Jinfa. Research and utilization of cotton heterosis[J]. Cotton Science, 1994, 6(3): 135-139.
[9]  戴茂华, 吴振良, 刘丽英. 棉花杂种优势的研究现状及发展趋势[J]. 河北农业科学, 2009, 13(8): 54-55,57.
[10]  Dai Maohua, Wu Zhengliang, Liu Liying. Research status and development trend of heterosis of cotton[J]. Journal of Hebei Agricultural Sciences, 2009, 13(8): 54-55,57.
[11]  王瑞清, 曹连莆, 闫志顺, 等. 小黑麦数量性状遗传研究进展[J]. 种子, 2006, 25(9): 34-37.
[12]  Wang Ruiqing, Cao Lianpu, Yan Zhishun, et al. Research advance in quantitative traits of Triticale[J]. Seed, 2006, 25(9): 34-37.
[13]  朱军. 作物杂种后代基因型值和杂种优势的预测方法[J]. 生物数学学报, 1993, 8(1): 32-44.
[14]  Zhu Jun. Methods of predicting genotype value and heterosis for offspring of hybrids[J]. Biomathematics, 1993, 8(1): 32-44.
[15]  朱军. 遗传模型分析方法[M]. 北京: 中国农业出版社, 1997: 91-97.
[16]  Zhu Jun. Analysis methods of inheritance models[M]. Beijing: China Agriculture Press, 1997: 91-97.
[17]  Jenkins J N, McCarty Jr J C, Wu Jixiang, et al. Genetic variance components and genetic effects among eleven diverse upland cotton lines and their F2 hybrids[J]. Euphytica, 2009, 167: 397- 408.
[18]  杨六六, 刘惠民, 曹美莲, 等. 棉花产量和纤维品质性状的遗传研究[J]. 棉花学报, 2009, 21(3): 179-183.
[19]  Yang Liuliu, Liu Huimin, Cao Meilian, et al. The inheritance of cotton yield and fiber quality characters[J]. Cotton Science, 2009, 21(3): 179-183.
[20]  金卫斌, 刘定富. 组合拉丁方设计与分析方法研究[J]. 湖北农学院学报, 1991, 11(2): 68-76.
[21]  Jin Weibin, Liu Dingfu. Design and analysis method of combination Latin square[J]. Journal of Hubei Agricultural College, 1991, 11(2): 68-76.
[22]  金卫斌, 李煦远. 组合拉丁方设计在田间试验中的应用[J]. 湖北农学院学报, 1995, 15(3): 161-166.
[23]  Jin Weibin, Li Xuyuan. Application of combination Latinsquare design in field trials[J]. Journal of Hubei Agricultural College, 1995, 15(3): 161-166.
[24]  韩祥铭, 刘英欣. 陆地棉产量性状的遗传分析[J]. 作物学报, 2002, 28(4): 533-536.
[25]  Han Xiangming, Liu Yingxin. Genetic analysis for yield and its components in upland cotton[J]. Acta Agronomica Sinica, 2002, 28(4): 533-536.
[26]  邢朝柱, 喻树迅, 郭立平, 等. 不同生态环境下陆地棉转基因抗虫杂交棉遗传效应及杂种优势分析[J]. 中国农业科学, 2007, 40(5): 1056-1063.
[27]  Xing Chaozhu, Yu Shuxun, Guo Liping, et al. Analysis for genetic effect and heterosis of insect resistant transgenic upland cotton crosses in different ecological environments[J]. Scientia Agricultura Sinica, 2007, 40(5): 1056-1063.
[28]  Zeng Linghe, Wu Jixiang. Germplasm for genetic improvement of lint yield in upland cotton: genetic analysis of lint yield with yield components[J]. Euphytica, 2012, 187(2): 247-261.
[29]  Zeng Linghe, Meredith Jr W R, Boykin D L. Germplasm Potential for continuing improvement of fiber quality in upland cotton: Combining ability for lint yield and fiber quality[J]. Crop Science, 2011, 51(1): 60-68.
[30]  刘芦苇, 祝水金. 转基因抗虫棉产量性状的遗传效应及其杂种优势分析[J]. 棉花学报, 2007, 19(1): 33-37.
[31]  Liu Luwei, Zhu Shuijin. Analysis of genetic effects and heterosis for yield and yield traits in transgenic insect resistant cotton (G. hirsutum L)[J]. Cotton Science, 2007, 19(1): 33-37.
[32]  Meredith Jr W R. Yield and fiber-quality potential for second-generation cotton hybrids[J]. Crop Science, 1990, 30: 1045-1048.
[33]  孙济中, 刘金兰, 张金发. 棉花杂种优势的研究和利用[J]. 棉花学报, 1994, 6(3): 135-139.
[34]  Sun Jizhong, Liu Jinlan, Zhang Jinfa. Research and utilization of cotton heterosis[J]. Cotton Science, 1994, 6(3): 135-139.
[35]  邢朝柱, 靖深蓉, 郭立平, 等. 转Bt基因棉杂种优势及性状配合力研究[J]. 棉花学报, 2000, 12(1): 6-11.
[36]  Xing Chaozhu, Jing Shenrong, Guo Liping, et al. Study on heterosis and combining ability of transgenic Bt (Bacillusthurin- giensis) cotton[J]. Acta Gossypii Sinica, 2000, 12(1): 6-11.
[37]  王学德, 潘家驹. 陆地棉杂种优势及自交衰退的遗传分析[J]. 作物学报, 1991, 17(1): 18-23.
[38]  Wang Xuede, Pan Jiaju. Genetic analysis of cotton heterosis and inbreeding depression[J]. Acta Agronomica Sinica, 1991, 17(1): 18-23.
[39]  商连光, 闫勇, 肖荧南, 等. 抗虫陆地棉配合力与杂种优势分析[J]. 中国农业大学学报, 2012, 17(4): 1-8.
[40]  Shang Lianguang, Yan Yong, Xiao Yingnan, et al. Analysis on the heterosis and combining ability of upland cotton with Bt resistance[J]. Journal of China Agricultural University, 2012, 17(4): 1-8.
[41]  Wu Yaoting, Yin Jianmei, Guo Wangzhen, et al. Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton[J]. Plant Breeding, 2004, 123(3): 285-289. 

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133