Wang Huan, Li Kai, Zhu Jiaying, et al. Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses[J]. Arch Insect Biochem Physiol, 2012, 79: 247-263.
[2]
Li Hongbo, Du Yuzhou. Molecular cloning and characterization of an Hsp90/70 organizing protein gene from Frankliniella occidentalis (Insecta: Thysanoptera, Thripidae)[J]. Gene, 2013, 520 (2): 148-155.
[3]
17 ] Sun Yang, Sheng Yang, Bai Lixin, et al. Characterizing heat shock protein 90 gene of Apolygus lucorum(Meyer-Dür) and its expression in response to different temperature and pesticide stresses[J]. Cell Stress and Chaperones, 2014(accepted).
[4]
Sonoda S, Tsumuki H. Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae[J]. Pestic Biochem Physiol, 2007, 89: 185- 189.
[5]
Shu Yinghua, Du Yan, Wang Jianwu. Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress[J]. Comp Biochem Physiol, 2011, 158(1): 102-110.
[6]
Tachibana S I, Numata H, Goto S G. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata[J]. J Insect Physiol, 2005, 51: 641-647.
[7]
Wu Kongming, Lu Yanhui, Feng Hongqiang, et al. Suppression of cotton Bollworm in multiple crops in China in areas with Bt toxin containing cotton[J]. Science, 2008, 5896: 1676-1678.
[8]
Li Guoping, Feng Hongqiang, McNeil J N, et al. Impacts of transgenic Bt cotton on a non-target pest, Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae), in northern China[J]. Crop Prot, 2011, 30: 1573-1578.
[9]
Lu Yanhui, Wu Kongming, Jiang Yuying, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science, 2010, 328: 1151-1154.
[10]
陆宴辉, 吴孔明. 棉花盲蝽蟓及其防治[M]. 北京: 金盾出版社, 2008.
[11]
Lu Yanhui, Wu Kongming. Biology and control of the mirids[M]. Beijing: Golden Shield Press, 2008.
[12]
Lu Y H, Liang G M, Wu K M. Advances in integrated management of cotton mirids[J]. Plant Prot, 2007, 33: 10-15.
XIAO Liubin, Tan Yongan, Sun Yang, et al. Adaptability and physiological response to host plant species switching in Apolygus lucorum[J]. Scientia Agricultura Sinaca, 2013, 46(23): 4941-4949.
[15]
Song Nana, Ding Wenhui, Chu Songyun, et al. Urotensin II stimulates vascular endothelial growth actor secretion from adventitial fibroblasts in synergy with angiotensin II[J]. Vascular Medicine, 2012, 76(5): 1267-1273.
[16]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25: 402-408.
Wu Guoqiang, Xiao Liubin, Tan Yongan, et al. Relative preferences of Apolygus lucorum adults for six host species and their volatiles[J]. Chinese Journal of Applied Entomology, 2012, 49(3): 641-647.
Chen Mingshun, Wu Junxiang, Zhang Guohui. Inducible direct plant defense against insect herbivores[J]. Chinese Bulletin of Entomology, 2009, 46(2): 175-186.
Peng Lu, Yan Ying, Liu Wanxue, et al. Counter-defense mechanisms of phytophagous insects towards plant defense[J]. Acta Entomologica Sinica, 2010, 53(5): 572-580.
Tan Yongan, Bai Lixin, Xiao Liubin, et al. Effects of introducing CrylAC and CrylAC+CpTI genes in cotton on two digestive enzymes activities and trehalose content of Apolygus lucorum[J]. Cotton Science, 2011, 23(5): 394-400.
[25]
Pan Yiou, Guo Huilin, Gao Xiwu. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii[J]. Comp Biochem Physiol, 2009, 152: 266-270.
[26]
Zhou Xiaojie, Sheng Chengfa, Li Mei, et al. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera[J]. Pestic Biochem Physiol, 2010, 97: 209-213.
Sun Yang, Bai Lixin, Zhang Yongjun, et al. Cloning of serine protease gene AlSP4 and its expression patterns after feeding on different host plants in Apolygus lucorum (Hemiptera:Miridae)[J]. Acta Entomologica Sinica, 2012, 55(6): 641-650.
Zhang Lijuan, Cui Jianzhou, Li Jiquan, et al. Taxis responses of Lygus lucorum Meyer-Dür to volatiles of Ziziphus jujuba flowering branches with different treatments[J]. Journal of agricultu- ral university of Hebei, 2010, 33(4): 81-84.
Wang Jianyi, Dai Zhiyi, Yang Yizong. Changes of cotton bollworms feeding on different host plants to Betacypermethrin[J]. Cotton Science, 2001, 13(5): 286-289.
Sun Yang, Bai Lixin, Zhang Yongjun, et al. Identification and expression analysis of serine protease AlSP3 gene in Apolygus lucorum(Meyer-Dür)[J]. Jiangsu Journal of Agriculture Science, 2012, 28(5): 991-998.
[35]
Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology[J]. Annu Rev Physiol, 1999, 61: 243-282.
[36]
Sonoda S, Ashfaq M, Tsumuki H. A comparison of heat shock protein genes from cultured cells of the cabbage armyworm, Mamestra brassicae, in response to heavy metals[J]. Arch Insect Biochem Physiol, 2007, 65: 210-222.
[37]
Li Zihai, Srivastava P. Heat-shock proteins[J]. Curr Protoc Immunol, 2004, Appendix 1: Appendix 1T.
[38]
Taipale M, Jarosz D F, Lindquist S. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights[J]. Nat Rev Mol Cell Biol, 2010, 11: 515-528.
[39]
Minami Y, Kimura Y, Kawasaki H, et al. The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo[J]. Mol Cell Biol, 1994, 14: 1459-1464.
[40]
Nemoto T, Ohara-Nemoto Y, Ota M, et al. Mechanism of dimer formation of the 90-kDa heat-shock protein[J]. Eur J Biochem, 1995, 233: 1-8.
[41]
Young J C, Moarefi I, Hartl F U. Hsp90: a specialized but essential protein-folding tool[J]. J Cell Biol, 2001, 154: 267-273.
[42]
Csemely P, Schnaider T, Soti C, et al. The 90-kDa molecular chaperone family: structure, function, and clinical application. A comprehensive review[J]. Pharmacol Ther, 1998, 79: 129-168.
[43]
Prodromou C, Pearl L H. Structure and functional relationships of Hsp90[J]. Curr Cancer Drug Targets, 2003, 3: 301-323.
[44]
Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis[J]. Cancer Sci, 2007, 98: 1536-1539.
[45]
Yue Lin, Karr T L, Nathan D F, et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis[J]. Genetics, 1999, 151: 1065-1079.
[46]
Song Yan, Fee L, Lee T H, et al. The molecular chaperone Hsp90 is required for mRNA localization in Drosophila melanogaster embryos[J]. Genetics, 2007, 176: 2213-2222.
[47]
Pisa V, Cozzolino M, Gargiulo S, et al. The molecular chaperone Hsp90 is a component of the capbinding complex and interacts with the translational repressor cup during Drosophila oogenesis[J]. Gene, 2009, 432: 67-74.
[48]
Jiang Xingfu, Zhai Huifang, Wang Ling, et al. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development[J]. Cell Stress and Chaperones, 2012, 17: 67-80.