全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2014 

取食不同寄主植物对绿盲蝽热激蛋白AlHSP90表达的影响

DOI: 1002-7807(2014)02-08, PP. 153-160

Keywords: 绿盲蝽,热激蛋白90,表达谱分析,寄主,棉花

Full-Text   Cite this paper   Add to My Lib

Abstract:

绿盲蝽热激蛋白90基因AlHSP90是绿盲蝽体内重要的抗逆基因,参与绿盲蝽耐受高温、杀虫剂等胁迫反应。为了明晰绿盲蝽取食不同寄主植物后其体内抗逆基因的表达特征,本试验通过荧光定量PCR和Western杂交技术,重点分析AlHSP90基因及其蛋白在绿盲蝽取食不同寄主植物后的表达谱。结果表明绿盲蝽雌、雄成虫取食Bt棉、常规棉后,AlHSP90表达量显著高于取食其他寄主植物(P0.05)。雌成虫取食Bt棉、常规棉后,AlHSP90表达量分别比对照上升了1.77、1.74倍;而雄成虫取食Bt棉、常规棉后,AlHSP90表达量则分别比对照上升了1.98、1.94倍。取食不同寄主植物之后,AlHSP90蛋白的表达谱结果与其基因的表达谱结果高度相似。绿盲蝽雌、雄成虫取食Bt棉、常规棉后,AlHSP90蛋白表达量显著高于取食其他寄主植物(P0.05)。由此可见,AlHSP90基因是绿盲蝽适应棉花取食过程中重要的抗逆基因,并在绿盲蝽寄主转换过程中起到重要作用。

References

[1]  Wang Huan, Li Kai, Zhu Jiaying, et al. Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses[J]. Arch Insect Biochem Physiol, 2012, 79: 247-263.
[2]  Li Hongbo, Du Yuzhou. Molecular cloning and characterization of an Hsp90/70 organizing protein gene from Frankliniella occidentalis (Insecta: Thysanoptera, Thripidae)[J]. Gene, 2013, 520 (2): 148-155.
[3]  17 ] Sun Yang, Sheng Yang, Bai Lixin, et al. Characterizing heat shock protein 90 gene of Apolygus lucorum(Meyer-Dür) and its expression in response to different temperature and pesticide stresses[J]. Cell Stress and Chaperones, 2014(accepted).
[4]  Sonoda S, Tsumuki H. Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae[J]. Pestic Biochem Physiol, 2007, 89: 185- 189.
[5]  Shu Yinghua, Du Yan, Wang Jianwu. Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress[J]. Comp Biochem Physiol, 2011, 158(1): 102-110.
[6]  Tachibana S I, Numata H, Goto S G. Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata[J]. J Insect Physiol, 2005, 51: 641-647.
[7]  Wu Kongming, Lu Yanhui, Feng Hongqiang, et al. Suppression of cotton Bollworm in multiple crops in China in areas with Bt toxin containing cotton[J]. Science, 2008, 5896: 1676-1678.
[8]  Li Guoping, Feng Hongqiang, McNeil J N, et al. Impacts of transgenic Bt cotton on a non-target pest, Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae), in northern China[J]. Crop Prot, 2011, 30: 1573-1578.
[9]  Lu Yanhui, Wu Kongming, Jiang Yuying, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science, 2010, 328: 1151-1154.
[10]  陆宴辉, 吴孔明. 棉花盲蝽蟓及其防治[M]. 北京: 金盾出版社, 2008.
[11]  Lu Yanhui, Wu Kongming. Biology and control of the mirids[M]. Beijing: Golden Shield Press, 2008.
[12]  Lu Y H, Liang G M, Wu K M. Advances in integrated management of cotton mirids[J]. Plant Prot, 2007, 33: 10-15.
[13]  肖留斌, 谭永安, 孙洋, 等. 绿盲蝽对寄主转换的适应性及生理响应[J]. 中国农业科学, 2013, 46(23): 4941-4949.
[14]  XIAO Liubin, Tan Yongan, Sun Yang, et al. Adaptability and physiological response to host plant species switching in Apolygus lucorum[J]. Scientia Agricultura Sinaca, 2013, 46(23): 4941-4949.
[15]  Song Nana, Ding Wenhui, Chu Songyun, et al. Urotensin II stimulates vascular endothelial growth actor secretion from adventitial fibroblasts in synergy with angiotensin II[J]. Vascular Medicine, 2012, 76(5): 1267-1273.
[16]  Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25: 402-408.
[17]  吴国强, 肖留斌, 谭永安, 等. 绿盲蝽成虫对六种寄主及其挥发物的选择趋势[J]. 应用昆虫学报, 2012, 49(3): 641-647.
[18]  Wu Guoqiang, Xiao Liubin, Tan Yongan, et al. Relative preferences of Apolygus lucorum adults for six host species and their volatiles[J]. Chinese Journal of Applied Entomology, 2012, 49(3): 641-647.
[19]  陈明顺, 仵均祥, 张国辉. 植物诱导性直接防御[J]. 昆虫知识, 2009, 46(2): 175-186.
[20]  Chen Mingshun, Wu Junxiang, Zhang Guohui. Inducible direct plant defense against insect herbivores[J]. Chinese Bulletin of Entomology, 2009, 46(2): 175-186.
[21]  彭露, 严盈, 刘万学, 等. 植食性昆虫对植物的反防御机制[J]. 昆虫学报, 2010, 53(5): 572-580.
[22]  Peng Lu, Yan Ying, Liu Wanxue, et al. Counter-defense mechanisms of phytophagous insects towards plant defense[J]. Acta Entomologica Sinica, 2010, 53(5): 572-580.
[23]  谭永安, 柏立新, 肖留斌, 等. 转CrylAC及CrylAC+CpTI基因对棉花上绿盲蝽2种消化酶活性及海藻糖含量的影响[J]. 棉花学报, 2011, 23(5): 394-400.
[24]  Tan Yongan, Bai Lixin, Xiao Liubin, et al. Effects of introducing CrylAC and CrylAC+CpTI genes in cotton on two digestive enzymes activities and trehalose content of Apolygus lucorum[J]. Cotton Science, 2011, 23(5): 394-400.
[25]  Pan Yiou, Guo Huilin, Gao Xiwu. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii[J]. Comp Biochem Physiol, 2009, 152: 266-270.
[26]  Zhou Xiaojie, Sheng Chengfa, Li Mei, et al. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera[J]. Pestic Biochem Physiol, 2010, 97: 209-213.
[27]  孙洋, 柏立新, 张永军, 等. 绿盲蝽丝氨酸蛋白酶基因AlSP4的克隆及取食不同寄主植物后的表达谱分析[J]. 昆虫学报, 2012, 55(6): 641-650.
[28]  Sun Yang, Bai Lixin, Zhang Yongjun, et al. Cloning of serine protease gene AlSP4 and its expression patterns after feeding on different host plants in Apolygus lucorum (Hemiptera:Miridae)[J]. Acta Entomologica Sinica, 2012, 55(6): 641-650.
[29]  张立娟, 崔建州, 李继泉, 等. 绿盲蝽对不同处理具花枣枝挥发物的趋性反应[J]. 河北农业大学学报, 2010, 33(4): 81-84.
[30]  Zhang Lijuan, Cui Jianzhou, Li Jiquan, et al. Taxis responses of Lygus lucorum Meyer-Dür to volatiles of Ziziphus jujuba flowering branches with different treatments[J]. Journal of agricultu- ral university of Hebei, 2010, 33(4): 81-84.
[31]  王建军, 戴志一, 杨益众. 取食不同寄主植物的棉铃虫对高效氯氰菊酯敏感性的变化[J]. 棉花学报, 2001, 13(5): 286-289.
[32]  Wang Jianyi, Dai Zhiyi, Yang Yizong. Changes of cotton bollworms feeding on different host plants to Betacypermethrin[J]. Cotton Science, 2001, 13(5): 286-289. 
[33]  孙洋, 柏立新, 张永军, 等. 绿盲蝽丝氨酸蛋白酶基因AlSP3的鉴定及表达谱分析[J]. 江苏省农业学报, 2012, 28(5): 991- 998.
[34]  Sun Yang, Bai Lixin, Zhang Yongjun, et al. Identification and expression analysis of serine protease AlSP3 gene in Apolygus lucorum(Meyer-Dür)[J]. Jiangsu Journal of Agriculture Science, 2012, 28(5): 991-998.
[35]  Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology[J]. Annu Rev Physiol, 1999, 61: 243-282.
[36]  Sonoda S, Ashfaq M, Tsumuki H. A comparison of heat shock protein genes from cultured cells of the cabbage armyworm, Mamestra brassicae, in response to heavy metals[J]. Arch Insect Biochem Physiol, 2007, 65: 210-222.
[37]  Li Zihai, Srivastava P. Heat-shock proteins[J]. Curr Protoc Immunol, 2004, Appendix 1: Appendix 1T.
[38]  Taipale M, Jarosz D F, Lindquist S. Hsp90 at the hub of protein homeostasis: emerging mechanistic insights[J]. Nat Rev Mol Cell Biol, 2010, 11: 515-528.
[39]  Minami Y, Kimura Y, Kawasaki H, et al. The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo[J]. Mol Cell Biol, 1994, 14: 1459-1464.
[40]  Nemoto T, Ohara-Nemoto Y, Ota M, et al. Mechanism of dimer formation of the 90-kDa heat-shock protein[J]. Eur J Biochem, 1995, 233: 1-8.
[41]  Young J C, Moarefi I, Hartl F U. Hsp90: a specialized but essential protein-folding tool[J]. J Cell Biol, 2001, 154: 267-273.
[42]  Csemely P, Schnaider T, Soti C, et al. The 90-kDa molecular chaperone family: structure, function, and clinical application. A comprehensive review[J]. Pharmacol Ther, 1998, 79: 129-168.
[43]  Prodromou C, Pearl L H. Structure and functional relationships of Hsp90[J]. Curr Cancer Drug Targets, 2003, 3: 301-323.
[44]  Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis[J]. Cancer Sci, 2007, 98: 1536-1539.
[45]  Yue Lin, Karr T L, Nathan D F, et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis[J]. Genetics, 1999, 151: 1065-1079.
[46]  Song Yan, Fee L, Lee T H, et al. The molecular chaperone Hsp90 is required for mRNA localization in Drosophila melanogaster embryos[J]. Genetics, 2007, 176: 2213-2222.
[47]  Pisa V, Cozzolino M, Gargiulo S, et al. The molecular chaperone Hsp90 is a component of the capbinding complex and interacts with the translational repressor cup during Drosophila oogenesis[J]. Gene, 2009, 432: 67-74.
[48]  Jiang Xingfu, Zhai Huifang, Wang Ling, et al. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development[J]. Cell Stress and Chaperones, 2012, 17: 67-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133