[19] HE DAO-HUA, Lin Zhong-xu, Zhang Xian-long, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense [J]. Euphytica, 2007, 153: 181-197.
[2]
[20] WAGHMARE V N, Rong J K, Paterson A H, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum[J]. Theor Appl Genet, 2005, 111: 665-676.
[3]
[21] NGUYEN T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet, 2004, 109:167-175.
[4]
[22] SHAPPLEY Z W, Jenkins J N, Meredith W R, et al. An RFLP linkage map of Upland cotton, Gossypium hirsutum [J]. Theor Appl Genet, 1998, 97: 756-761.
[5]
[23] SHAPPLEY Z W, Jenkins J N, Watson C E, et al. Establishment of molecular markers and linkage groups in two F2 population of upland cotton [J]. Theor Appl Genet, 1996, 92: 915-919.
[6]
[24] SHAPPLEY Z W, Jenkins J N, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton [J]. The Journal of Cotton Science, 1998, 2: 153-163.
[7]
[25] ULLOA M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population [J]. The Journal of Cotton Science, 2000, 4:161-170.
[8]
[26] ULLOA M, Meredith W R, Shappley Z W, et al. RFLP genetic linkage maps from four F2:3 populations populations and a joinmap of Gossypium hirsutum[J]. Theor Appl Genet, 2002, 104: 200-208.
[9]
[27] ULLOA M, Shaha S, Jenkins J N, et al. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap [J]. Journal of Heredity, 2005,96(2): 132-144.
[10]
[28] ZHANG Zheng-sheng, Xiao Yue-hua, Luo Ming, et al. Construction of a genetic linkage map and QTL analysis of fiber-related [J]. Euphytica, 2005, 144: 91-97.
[11]
[29] SHEN Xin-lian, Zhang Tian-zhen, Guo Wang-zhen, et al. Mapping fiber and yield QTLs with main, epistatic and QTL-environment interaction effects in recombinant inbred lines of upland cotton [J]. Crop Sci, 2006, 46(1): 61-66.
[12]
[30] SHEN Xin-lian, Guo Wang-zhen, Lu Qiong-xian, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton [J]. Euphytica, 2007, 155: 371-380.
[13]
[31] WANG Bao-hua, Guo Wang-zhen, Zhu Xie-fei, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica, 2006, 152: 367-378.
[33] WAN Qun, Zhang Zheng-sheng, Hu Mei-chun, et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance [J]. Euphytica, 2007, 158:241-247.
[16]
[34] WRIGHT R J, Thaxton P M, El-Zik K M, et al. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution [J]. Genetics, 1998, 149(4): 1987-1996.
[17]
[35] RUNGIS D, Llewellyn D, Dennis E S, et al. Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.) cultivar [J]. Australian Journal of Agricultural Research, 2002, 53(5): 551-560.
[18]
[36] WRIGHT R J, Thaxton P M, ElZik K M, et al. Molecular mapping of genes affecting pubescence of cotton [J]. Journal of Heredity, 1999, 90(1): 215-219.
[19]
[37] JIANG Chun-xiao, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4419-4424.
[20]
[38] JIANG Chun-xiao, Wright R J, Woo S S, et al. QTL analysis of leaf morphology in tetraploid Gossypium (cotton) [J]. Theor Appl Genet, 2000, 100(3/4): 409-418.
[21]
[39] SARANGA Y, Menz M, JIANG Chun-xiao, et al. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions [J]. Genome Research, 2001, 11(12): 1988-1995.
[22]
[40] SARANGA Y, JIANG Chun-xiao, Wright R J, et al. Genetic dissection of cotton physiological responses to arid conditions and their interrelationships with productivity [J]. Plant Cell Environment, 2004, 27(3): 263-277.
[23]
[41] REN Li-hua, Guo Wang-zhen, Zhang Tian-zhen. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line [J]. Acta Botanica Sinica, 2002, 44(7): 815-820.
[24]
[42] [JPLIU Li-wang, Guo Wang-zhen, Zhu Xie-fei, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. [J]. Theor Appl Genet, 2003, 106(3): 461-469.
[25]
[43] PATERSON A H, Saranga Y, Menz M, et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality [J]. Theor App Genet, 2003, 106(3): 384-396.
[26]
[44] ZHANG Tian-zhen, Yuan You-lu, Yu John, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection [J]. Theor Applied Genet, 2003, 106(2): 262-268.
[27]
[45] YIN Jian-mei, Guo Wang-zhen, Yang Lu-ming, et al. Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton [J]. Theor Appl Genet, 2006, 112(7): 1318-1325.
[28]
[46] BOLEK Y, El-Zik K M, Pepper A E, et al. Mapping of Verticillium wilt resistance genes in cotton [J]. Plant Science, 2005, 168: 1581-1590.
[67] GUO Wang-zhen, Zhang Tian-zhen, Shen Xin-lian, et al. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton [J]. Crop Science, 2003, 43(6): 2252-2256.
[31]
[68] ZHANG Jin-fa and Stewart J M. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility [J]. Crop Science, 2001, 41(2): 289-294.
[32]
[70] ZHANG Jin-fa, Stewart J McD. Identification of molecular markers linked to the fertility restorer genes for CMSD8 in cotton [J] Crop Science, 2004, 44(4): 1209-1217.
[72] HE Li-mei, Du Chun-guang, Covaleda L, et al. Cloning, characterization and evolution of the NBS-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutm L.) [J]. Molecular PlantMicrobe Interaction, 2004, 17: 1234-1241.
[35]
[1] STURTEVANT A H. A history of genetics [M]. New York: Harper and Row, 1965, 1-167.
[36]
[2] PETERSON A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium ssp.) genomic DNA suitable for RFLP and PCR analysis [J]. Plant Mol Biol Rep, 1993, 11: 112-117.
[37]
[3] REINISCH A J, Dong Jian-min, Wendel J F, et al. A detailed RFLP map of cotton Gossypium hirsutum ×Gossypium barbadense chromosome organization and evolution in a disomic polyploid genome [J]. Genetics, 1994, 138: 829-847.
[38]
[4] ZHANG Jun, Guo Wang-zhen, Zhang Tian-zhen. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet, 2002, 105: 1166-1173.
[39]
[5] SONG Xian-liang, Wang Kai, Guo Wang-zhen, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. [J]. Genome, 2005, 48: 375-389.
[40]
[6] RONG Jun-kang, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics, 2004, 166: 389-417.
[41]
[12] KHAN M A, Myers G O, Stewart J M, et al. Addition of new markers to the treispecific cotton map [C]//Proceedings of 1999 Beltwide cotton conferences. Memphis: National Cotton Council of America, 1999, 439.
[42]
[13] BRUBAKER C L, Paterson A H, Wendel J F. Comparative genetics mapping of allotetraploid cotton and its diploid progenitors [J]. Genome,1999, 42: 184-203.
[43]
[14] KOHEL R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica, 2001, 121: 163-172.
[44]
[15] LACAPE J M, Nguyen T B, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population [J]. Genome, 2003, 46: 612-626.
[45]
[16] MEI M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits [J]. Theor Appl Genet, 2004, 108: 280-291.
[46]
[17] PARK Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population [J]. Mol Gen Genomics, 2005.
[47]
[18] HE Dao-hua, Lin Zhong-xu, Zhang Xian-long, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton [J]. Euphytica, 2005, 144: 141-149.
[48]
[7] HAN Zhi-guo, Guo Wang-zhen, Song Xian-liang, et al. Genetic mapping of EST-derived microsatellites from the diploid [J]. Mol Gen Genomics, 2004, 272: 308-325.
[49]
[8] HAN Zhi-guo, Wang Chang-biao, Song Xian-liang, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton [J]. Theor Appl Genet, 2006, 112: 430-439.
[50]
[9] GUO Wang-zhen, Cai Cai-ping, Wang Chang-biao, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium [J]. Genetics, 2007, 176: 527-541.
[51]
[10] ALTAF M K, Steward J M, Wajahatullah M K et al. Molecular and morphological genetics of a trispecies F2 population of cotton [C]// Proceedings of 1997 Beltwide cotton conferences. Memphis: National Cotton Council of America, 1997, 448-452.
[52]
[11] JIANG Chun-xiao, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci, 1998, 95: 4419-4424.
[53]
[47] CHEE P, Draye X, JIANG Chun-xiao, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation [J]. Theor Appl Genet, 2005, 111: 757-763.
[54]
[48] CHEE P, Draye X, JIANG Chun-xiao, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcrossself approach: III. Fiber length [J]. Theor Appl Genet, 2005, 111: 772-781.
[55]
[49] DRAYE X, Chee P, JIANG Chun-xiao, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcrossself approach: II. Fiber fineness [J]. Theor Appl Genet, 2005, 111(4): 764-771.
[56]
[50] RONG J, Pierce G J, Waghmare V N, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton [J]. Theor Appl Genet, 2005, 111(6): 1137-1146.
[57]
[51] SONG Xianliang, Guo Wang-zhen, Han Zhi Guo, et al. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton [J]. Journal of Integrative Plant Biology, 2005, 47(11): 1382-1390.
[58]
[52] LACAPE J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton [J]. Journal of Heredity, 2005, 96(4): 441-444.
[59]
[53] LACAPE J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generations [J]. Crop Science, 2005, 45(1): 123-140.
[60]
[54] LIN Zhong-xu, He Dao-hua, Zhang Xian-long, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP,SSR and RAPD [J]. Plant Breeding, 2005, 124(2): 180-187.
[61]
[55] HE Dao-hua, Lin Zhong-xu, Zhang Xian-long, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense [J]. Euphytica, 2007, 153(1-2): 181-197.
[62]
[56] SHEN Xin-lian, Guo Wang-zhen, Zhu Xie-fei, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers [J]. Molecular Breeding, 2005, 15(2): 169-181.
[63]
[57] SHEN Xin-lian, Becelaere G V, Kumar P, et al. QTL mapping for resistance to root-knot nematodes in the M-120 RNR upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source [J]. Theor Appl Genet, 2006, 113(8): 1539-1549.
[64]
[58] WANG Cong-li, Ulloa M, Roberts P A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala Nem X cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet, 2006, 112(4): 770-777.
[65]
[59] WANG Cong-li, Roberts P A. Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton [J]. Euphytica, 2006, 152(2): 185-196.
[66]
[60] YNTURI P, Jenkins J N, McCarty J C, et al. Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton [J]. Crop Science,2006,46(6): 2670-2674.
[67]
[61] GUO Wang-zhen, Ma Guo-jia, Zhu Yi-chao, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton [J]. Journal of Integrative Plant Biology, 2006, 48(3): 320-326.
[68]
[62] FRELICHOWSKI JR J E, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala ′Maxxa′ BAC-ends [J]. Mol Genet Genomics, 2006, 275(5): 479-491.
[69]
[63] SAHA S, Jenkins J N, Wu Ji-xiang, et al. Effects of chromosome specific introgression in upland cotton on fiber and agronomic traits [J]. Genetics, 2006, 172(3): 1927-1938.
[70]
[64] NI Xi-yuan, Wang Xue-de, Cheng Chao-hua, et al. Constructing of DNA molecular marker linkage map and mapping of qualitative and quantitative traits in upland cotton [J]. Cotton Science, 2007,19(1):71-73.
[69] GUO Wang-zhen, Zhang Tian-zhen, Pan Jia-ju, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton [J]. Chinese Science Bulletin, 1998, 43(1): 52-54.