全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2014 

棉花类固醇5α-还原酶基因单核苷酸位点的变异效应

DOI: 1002-7807(2014)05-0404-07, PP. 404-410

Keywords: 棉花,类固醇5α-还原酶基因,单核苷酸变异,配体结合域

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了明确棉花种质资源中类固醇5α-还原酶(Steroid5alpha-reductase,DET2)基因单核苷酸多态性,了解核苷酸位点变异对其编码蛋白配体结合域的影响并开发功能分子标记,本研究采用同源基因特异扩增、测序的方法,筛查不同棉花材料的DET2基因编码区突变,分析DET2基因编码蛋白质的三级结构及配体结合位点及其与纤维品质和育性的相关性。结果表明,包含陆地棉、海岛棉、雷蒙德氏棉在内的13份棉属材料DET2基因序列一致性为98.7%,编码区25个碱基易突变位点中有8个位点涉及编码氨基酸变化;该基因编码的蛋白二级、三级结构基本相似,但是配体结合位点差异较大;编码蛋白配体结合域共有8种类型,与品种间SNP组合类型完全相符。DET2基因与棉花纤维品质形成相关,但与育性无关。

References

[1]  Ryu H, Hwang I. Brassinosteroids in plant developmental signaling networks[J]. Journal of Plant Biol, 2013, 56 (5): 267-273.
[2]  Jiang Wenbo, Huang Huiya, Hu Yuwei, et al. Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology, 2013, 162 (4): 1965-1977.
[3]  Gudesblat G E, Schneider-Pizoń J, Betti C, et al. SPEECHLESS integrates brassinosteroid and stomata signalling pathways[J]. Nat Cell Biol, 2012, 14 (5): 548-554.
[4]  Kim T W, Michniewicz M, Bergmann D C, et al. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482 (7385): 419-422.
[5]  Wang Zhiyong, Bai Mingyi, Oh E, et al. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annu Rev Genet, 2012, 46: 701-724.
[6]  Wang Zhiyong, Wang Qiaomei, Chong Kang, et al. The brassinosteroid signal transduction pathway[J]. Cell Research, 2006, 16(5):427-434.
[7]  Kasukabe Y, Fujisawa K, Nishiguchi S, et al. Production of cotton fiber with improved fiber characteristics: United States, 20010018773[P]. 2003-05-13.
[8]  Sun Yan, Fokar M, Asami T. Characterization of the brassinosteroid insensitive 1 genes of cotton[J]. Plant Mol Biol, 2004, 54 (2): 221-232.
[9]  Sun Yan, Veerabomma S, Abdel-Mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules[J]. Plant Cell Physiol, 2005, 46 (8): 1384-1391.
[10]  Shi Yonghui,Zhu Shengwei,Mao Xizeng,et al. Transcriptome profiling,molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J]. Plant Cell, 2006, 18 (3): 651-664.
[11]  Luo Ming, Xiao Yuehua, Li Xianbi, et al.GhDET2, a steroid 5a-reductase, plays an important role in cotton fiber cell initiation and elongation[J]. The Plant Journal, 2007, 51 (3): 419-430.
[12]  Li Jia, Nagpal P, Vatart V, et al. A role for brassinosteroids in light-dependent development of Arabidopsis[J]. Science, 1996, 272 (5260): 398-401.
[13]  Asami T, Yoshida S. Brassinosteroid biosynthesis inhibitors[J]. Trends Plant Sci, 1999, 4 (9): 348-353.
[14]  Fujioka S, Li Jia, Choi Y H, et al. The Arabidopsis de-etiolated 2 mutant is blocked early in brassinosteroid biosynthesis[J]. Plant Cell, 1997, 9 (11): 1951-1962.
[15]  Divi U K, Krishna P. Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance[J].New Biotechnol, 2009, 26 (3/4): 131-136.
[16]  郭宝生,刘存敬, 刘素恩, 等. 棉花种间杂交渐渗系抗黄萎病性状遗传分析[J]. 华北农学报,2008, 23(S2): 240-243.
[17]  Guo Baosheng, Liu Cunjing, Liu Suen, et al. Analysis on the inheritance of Verticillium wilt resistance of introgressed line from interspecific hybridization in cotton[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(S2): 240-243.
[18]  刘素恩, 耿军义, 崔瑞敏, 等. 优质抗病虫棉花新品种冀228综合性状分析[J]. 中国农学通报, 2009, 25 (23): 220-223.
[19]  Liu Suen, Geng Junyi, Cui Ruimin, et al. Comprehensive analysis of traits for new high quality and bollworm resistant cotton variety Ji228[J]. Chinese Agricultural Science Bulletin, 2009, 25(23): 220-223.
[20]  郭宝生,刘素恩,王兆晓, 等. 高产优质“三系”杂交棉品种冀FRH3018的选育[J]. 河北农业科学, 2010, 14(7): 63-65.
[21]  Guo Baosheng, Liu Suen, Wang Zhaoxiao, et al. Breeding of high yield, high quality three lines hybrid cotton variety Ji FRH3018[J]. Journal of Hebei Agricultural Sciences, 2010, 14(7): 63-65.
[22]  张建丰, 张战奇, 宇文璞. 棉花单隐性光温敏细胞核雄性不育系芽黄396A[J]. 农业科技通讯, 2006(4): 33.
[23]  Zhang Jianfeng, Zhang Zhanqi, Yuwen Pu. Cotton thermo/photoperiod-sensitive genic male sterile(T/PGMS) line 396A[J]. Agricultural Science and Technology Communication, 2006(4): 33.
[24]  Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Mol Biol Rep, 1993, 11(2): 122-127.
[25]  Kelley L A, Sternberg M J E. Protein structure prediction on the web: a case study using the Phyre server[J]. Nature Protocols, 2009, 4 (3): 363-371.
[26]  Wass M N, Kelley L A, Sternberg M J. 3DLigandSite: predicting ligand-binding sites using similar structures[J]. Nucleic Acids Research, 2010, 38: 469-473.
[27]  罗明. GhDET2和GhKTN1在棉花纤维细胞发育中的功能[D]. 重庆: 西南大学, 2007.
[28]  Luo Ming. Functions of GhDET2 and GhKTN1 in cotton fiber cell development[D]. Chongqing: Southwest University, 2007.
[29]  Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44 (10): 1098-1103.
[30]  束红梅, 郭书巧, 沈新莲, 等. 不同棉种油菜素内酯合成酶基因DET2序列分析[J]. 江苏农业学报, 2012, 28(2): 451-453.
[31]  Shu Hongmei, Guo Shuqiao, Shen Xinlian, et al. Sequencing of DET2 gene in different cotton species[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(2): 451-453.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133