Wang Z M, Xue W, Dong C J, et al. A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules[J]. Molecular Plant, 2012, 5(4): 889-900.
[2]
Kasschau K D, Fahlgren N, Chapman E J, et al. Genome-wide profiling and analysis of Arabidopsis siRNAs[J]. Plos Biology, 2007, 5(3): e57.
[3]
Wei B, Cai T, Zhang R, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv[J]. Functional & Integrative Genomics, 2009, 9(4): 499- 511.
[4]
Turner M, Yu O, Subramanian S. Genome organization and characteristics of soybean microRNAs[J]. BMC Genomics, 2012, 13(1): 169.
[5]
Moxon S, Jing R, Szittya G, et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening[J]. Genome Research, 2008, 18(10): 1602-1609.
[6]
Kwak P B, Wang Q Q, Chen X S, et al. Enrichment of a set of microRNAs during the cotton fiber development[J]. BMC Genomics, 2009, 10(1): 457.
Liu Zhijie. Characterize the roles of miRNAs in responding to short-term waterlogging in Zea mays root[D]. Wuhan: Huazhong Agricultural University , 2012.
[9]
Wang Gaskin, 余道乾, 杜雄明. 陆地棉种子发育过程中microRNA的挖掘与功能研究[J]. 棉花学报, 2014, 26(1): 81-86.
[10]
Wang G, Yu Daoqian, Du Xiongming. Identification of microRNAs in upland cotton[J]. Cotton Science, 2014, 26(1): 81-86.
[11]
Pang M, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.)[J]. Genome Biology, 2009, 10(11): R122.
[12]
Nessler C L. Metabolic engineering of plant secondary products[J]. Transgenic Research, 1994, 3(2): 109-115.
[13]
Zu Yuangang, Tang Zhonghua, Yu Jinghua, et al. Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings[J]. Acta Botanica Sinica, 2003, 45(7): 809-814.
Zhu Dongmei, Jia Yuan, Cui Jizhe, et al. Transcription factors in plant resistance to salt stress and its biological characteristics[J]. Biotechnology Bulletin, 2010, 4: 16-21.
Zhao Hu, Li Yuhong. The review of ABC transporters in plants[J]. Channel Science, 2012(2): 13-16.
[20]
Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees, 2004, 18(2): 167-174.
[21]
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.
[22]
Mass E V. Salt tolerance of plants[J]. Handbook of Plant Science in Agriculture, 1984, 2: 57-75.
[23]
Park M Y, Wu G, Gonzalez S A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10): 3691-3696.
[24]
Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation[J]. Current Biology, 2003, 13(9): 784-789.
[25]
Zhao L, Kim Y J, Dinh T T, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems[J]. The Plant Journal, 2007, 51(5): 840-849.
[26]
Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5): 713-714.
[27]
Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell Online, 2002, 14(7): 1605-1619.
[28]
Llave C, Xie Z, Kasschau K D, et al. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056.
[29]
Yin Z, Li Y, Yu J, et al. Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity[J]. Molecular Biology Reports, 2012, 39(4): 4961-4970.
[30]
丁冬. 玉米苗期盐胁迫响应转录本表达谱构建[D]. 武汉: 华中农业大学, 2008.
[31]
Ding Dong. Study on the expression profiles of salt responsive transcripts in maize seedlings[D]. Wuhan: Huazhong Agricultural University , 2008.
Li Bosheng. The research of Populus euphratica tolerance to abiotic stress under the regulation of microRNA[D]. Beijing: Beijing Forestry University, 2012.
Sun Xiaofang, Liu Youliang. Distributionof Na+ and K+ in cotton plant under NaCl stress and salt tolerance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(6): 1027-1033.
[36]
Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44 (10): 1098-1103.
Peng Zhen, He Shoupu, Sun Junling, et al. An efficient approach to identify salt tolerance of upland cotton at seedling stage[J]. Acta Agronomica Sinica, 2014, 40(3): 476-486.
[39]
Ghoul A M C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.