全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2015 

棉花对淹水胁迫的适应机制

DOI: 1002-7807(2015)01-0080-09, PP. 80-88

Keywords: 棉花,淹水胁迫,适应机制,逃避机制,静止适应机制,再生调节补偿

Full-Text   Cite this paper   Add to My Lib

Abstract:

淹涝是造成棉花减产的重要灾害因素。在淹水胁迫下,棉花的生长发育会受到不利影响,中、重度持续淹水还会引起棉花减产甚至绝产。但是,棉株自身具有完整的适应保护机制,遭受淹水胁迫后通过启动逃避机制、静止适应机制和再生调节补偿机制,适应淹水胁迫、减少涝害损失。本文重点就棉花对淹水胁迫的3个适应机制进行了详细论述,就淹水胁迫对棉花生长发育、生理特性和产量性状的影响以及缓解棉花淹水伤害的主要措施与方法也作了简要评述。

References

[1]  姜群鸥, 邓祥征, 战金艳, 等. 黄淮海平原气候变化及其对耕地生产潜力的影响[J]. 地理与地理信息科学, 2007, 23: 82-85.
[2]  Jiang Qun'ou, Deng Xiangzheng, Zhan Jinyan, et al. Climate change and its impacts on the agricultural productivity potential on the Huang-Huai-Hai Plain[J]. Geography and Geo-information Science, 2007, 23(5): 82-85.
[3]  李乐农, 彭克勤, 孙福增. 洪涝对棉花产量及其品质的影响[J]. 作物学报, 1999, 25(1): 109-115.
[4]  Li Lenong, Peng Keqin, Sun Fuzeng. Effects of flooding on yield and quality of cotton[J]. Acta Agronomica Sinica, 2007, 23(5): 82-85.
[5]  Liu Kaiwen, Su Rongrui, Zhu Jianqiang, et al. Dynamic responses of main physiological indices in cotton leaf to waterlogging stress at seedling stage[J]. Chinese Journal of Agrometeorology, 2012, 33(3): 442-447.
[6]  魏和平, 利容千. 淹水对玉米不定根形态结构和 ATP 酶活性的影响[J]. 植物生态学报, 2000, 24(3): 293-297.
[7]  Wei Heping, Li Rongqian. Effect of flooding morphology, structure and ATPase activity in adventitious root apical cells of maize seedlings[J]. Chinese Journal of Plant Ecology, 2000, 24(3): 293-297.
[8]  宋学贞, 杨国正, 罗振, 等. 花铃期淹水对棉花生长, 生理和产量的影响[J]. 中国棉花, 2012, 39(9): 5-8.
[9]  Song Xuezhen, Yang Guozheng, Luo Zhen, et al. Effects of waterlogging at flowering and boll-setting stage on plant growth, some physiological parameters and yield of cotton[J]. China Cotton, 2012, 39(9):5-8.
[10]  张培通, 徐立华, 杨长琴, 等. 涝渍对棉花产量及其构成的影响[J]. 江苏农业学报, 2008, 24(6): 785-791.
[11]  Zhang Peitong, Xu Lihua,Yang Changqin, et al. Effects of waterlogging on yield and its components of cotton[J]. Jiangsu Journal of Agriculture Science, 2008, 24(6): 785-791.
[12]  王留明, 沈法富. 渍涝与干旱对不同转 Bt 基因抗虫棉的影响[J]. 棉花学报, 2001, 13(2): 87-90.
[13]  Wang Liuming, Shen Fafu. Influences of waterlogging and drought on different transgenic Bt cotton cultivars[J]. Cotton Science, 2001, 13(2): 87-90.
[14]  Bange M, Milroy S, Thongbai P. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research, 2004, 88(2):129-142.
[15]  Meyer W, Reicosky D, Barrs H, et al. Physiological responses of cotton to a single waterlogging at high and low N-levels[J]. Plant and Soil, 1987, 102(2): 161-170.
[16]  刘凯文, 朱建强, 吴启侠. 蕾铃期涝渍相随对棉花叶片光合作用与产量的影响[J]. 灌溉排水学报, 2010(1): 23-26.
[17]  Liu Kaiwen, Zhu Jianqiang, Wu Qixia. Effects of subsurface waterlogging following after surface waterlogging in period of cotton budding to flowering and bearing bolls on leaf photosynthesis[J]. Journal of Irrigation and Drainage, 2010(1): 23-26.
[18]  董合忠, 李维江, 唐薇, 等. 干旱和淹水对棉苗某些生理特性的影响[J]. 西北植物学报, 2003, 23(10): 1695-1699.
[19]  Dong Hezhong, Li Weijiang, Tang Wei, et al. Effects of water-deficit and waterlogging on some physiological characteristics of cotton seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(10): 1695-1699.
[20]  罗振, 董合忠, 李维江, 等. 盐渍和涝渍对棉苗生长和叶片某些生理性状的复合效应[J]. 棉花学报, 2008, 20(3): 203-206.
[21]  Luo Zhen, Dong Hezhong, Li Weijiang, et al. Combined effects of waterlogging and salinity on plant growth and some physiological parameters in cotton seedling leaves[J]. Cotton Science, 2008, 20(3): 203-206.
[22]  Pandey D M, Goswami C L, Kumar B, et al. Hormonal regulation of photosynthetic enzymes in cotton under water stress[J]. Photosynthetica, 2001, 38(3): 403-407.
[23]  郭文琦, 赵新华, 陈兵林, 等. 氮素对花铃期短期渍水棉花根系生长的影响[J]. 作物学报, 2009, 35(6): 1078-1085.
[24]  Guo Wenqi, Zhao Xinhua, Chen Binglin, et al. Effects of nitrogen on cotton(Gossypium hirsutum L.) root growth under short-term waterlogging during flowering and boll-forming stage[J]. Acta Agronomica Sinica, 2009, 35(6): 1078-1085.
[25]  晏斌, 戴秋杰, 刘晓忠, 等. 玉米叶片涝渍伤害过程中超氧自由基的积累[J]. 植物学报, 1995, 37(9): 738-744.
[26]  Yan Bin, Dai Qiujie, Liu Xiaozhong, et al. Accumulation of superoxide radical in corn leaves during waterlogging[J]. Acta Botanica Sinica, 1995, 37(9): 738-744.
[27]  郭文琦, 刘瑞显, 周治国, 等. 施氮量对花铃期短期渍水棉花叶片气体交换参数和叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2010, 16(2): 362-369.
[28]  Ahmed F, Rafii M Y, Ismail M R, et al. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects[J]. BioMed Research International, 2013, 2013: 1-10.
[29]  刘凯文, 苏荣瑞, 朱建强, 等. 棉花苗期叶片关键生理指标对涝渍胁迫的响应[J]. 中国农业气象, 2012, 33(3): 442-447.
[30]  Guo Wenqi, Liu Ruixian, Zhou Zhiguo, et al. Effects of nitrogen fertilization on gas exchange and chlorophyll fluorescence parameters of leaf during the flowering and boll-forming stage of cotton under short-term waterlogging[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 362-369.
[31]  Hocking P, Reicosky D, Meyer W. Nitrogen status of cotton subjected to two short term periods of waterlogging of varying severity using a sloping plot water-table facility[J]. Plant and Soil, 1985, 87(3): 375-391.
[32]  Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions[J]. Field Crops Research, 2009, 113(3): 246-255.
[33]  Ashraf M A, Ahmad M S A, Ashraf M, et al. Alleviation of waterlogging stress in upland cotton(Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray[J]. Crop and Pasture Science, 2011, 62(1): 25-38.
[34]  Jackson M B. Ethylene and plant responses to soil waterlogging and submergence[J]. Annu Rev Plant Physiol, 1985, 36(1): 145- 174.
[35]  Vidoz M L, Loreti E, Mensuali A, et al. Hormonal interplay during adventitious root formation in flooded tomato plants[J]. The Plant Journal, 2010, 63(4): 551-562.
[36]  Parent C, Capelli N, Berger A, et al. An overview of plant responses to soil waterlogging[J]. Plant Stress, 2008, 2(1): 20-27.
[37]  Thirunavukkarasu N, Hossain F, Mohan S, et al. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize(Zea mays L.) under waterlogging stress[J]. PloS One, 2013, 8(8): e70433.
[38]  Hattori Y, Nagai K, Furukawa S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1026-1030.
[39]  张阳, 李瑞莲, 周仲华, 等. 涝渍胁迫对棉花蕾期生理生化响应的研究[C]//中国棉花学会 2013 年年会论文集. 安阳: 中国棉花学会, 2013: 206-212.
[40]  Zhang Yang, Li Ruilian, Zhou Zhonghua, et al. Studies on physiological land biochemical response to waterlogging at bud stage in cotton[C]// China Society of Cotton Sci-tech Annual Meeting Proceedings of 2013. Anyang: CSCS, 2013: 206-212.
[41]  严雯奕, 叶胜海, 董彦君, 等. 植物叶片衰老相关研究进展[J]. 作物杂志, 2010 (4): 4-9.
[42]  Yan Wenyi, Ye Shenghai, Dong Yanjun, et al. Research progress related to plant leaf senescence[J]. Crops, 2010 (4): 4-9.
[43]  陈鹭真, 林鹏, 王文卿. 红树植物淹水胁迫响应研究进展[J]. 生态学报, 2006,26(2): 586-593.
[44]  Chen Luzhen, Lin Peng, Wang Wenqing. Mechanisms of mangroves waterlogging resistance[J]. Acta Ecologica Sinica, 2006, 26(2): 586-593.
[45]  Xu Kenong, Xu Xia, Fukao T, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103): 705-708.
[46]  Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice[J]. Proceedings of the National Academy of Sciences, 2008, 105(43): 16814-16819.
[47]  Perata P, Voesenek L. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene[J]. Trends in Plant Science, 2007, 12(2): 43-46.
[48]  Christianson J A, Llewellyn D J, Dennis E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton(Gossypium hirsutum L.)[J]. Plant and Cell Physiology, 2010, 51(1): 21-37.
[49]  宋学贞. 硝普钠缓解棉花花铃期淹水伤害的效应研究[D]. 武汉: 华中农业大学, 2013.
[50]  Song Xuezhen. Effects of SNP on reliefing cotton damage caused by waterlogging during boll setting period[D]. Wuhan: Huazhong Agriculture University, 2013.
[51]  Lee Y H, Kim K S, Jang Y S, et al. Global gene expression responses to waterlogging in leaves of rape seedlings[J]. Plant Cell Reports, 2014, 33(2): 289-299.
[52]  董合忠, 李维江, 唐薇, 等. 留叶枝对抗虫杂交棉库源关系的调节效应和对叶片衰老与皮棉产量的影响[J]. 中国农业科学, 2007, 40(5): 909-915.
[53]  Dong Hezhong, Li Weijiang, Tang Wei, et al. Effects of retention of vegetative branches on source-sink relation, leaf senescence and lint yield in Bt transgenic hybrid cotton[J]. Scientia Agricultura Sinica, 2007, 40(5): 909-915.
[54]  董合忠. 棉花重要生物学和栽培特性及其在丰产简化栽培中的应用[J]. 中国棉花, 2013, 40(9): 1-4.
[55]  Dong Hezhong. Major biological characteristics of cotton and their application in extensive high-yielding cultivation[J]. China Cotton, 2013, 40(9): 1-4.
[56]  梁哲军, 陶洪斌, 王璞. 淹水解除后玉米幼苗形态及光合生理特征恢复[J]. 生态学报, 2009, 29(7): 3977-3986.
[57]  Liang Zhejun, Tao Hongbin, Wang Pu. Recovery effects of morphology and photosynthetic characteristics of maize(Zea mays L.) seedlings after waterlogging[J]. Acta Ecologica Sinica, 2009, 29(7): 3977-3986.
[58]  Ellis M H, Millar A A, Llewellyn D J, et al. Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency[J]. Functional Plant Biology, 2000, 27(11): 1041-1050.
[59]  Liu Peiqing, Sun Feng, Gao Rong, et al. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity[J]. Plant Molecular Biology, 2012, 79(6): 609-622.
[60]  Guo W, Liu R, Zhou Z, et al. Waterlogging of cotton calls for caution with N fertilization[J]. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 2010, 60(5): 450-459.
[61]  Wu Q X, Zhu J Q, Liu K W, et al. Effects of fertilization on growth and yield of cotton after surface waterlogging elimination[J]. Advance Journal of Food Science & Technology, 2012, 4(6): 398-403.
[62]  Wu W M, Li J C, Chen H J, et al. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage[J]. International Journal of Food, Agriculture and Environment, 2013, 11(1): 545-552.
[63]  董合忠,牛曰华,李维江,等. 不同整枝方式对棉花库源关系的调节效应[J]. 应用生态学报, 2008, 19(4): 819-824.
[64]  Dong Hezhong, Niu Yuehua, Li Weijiang, et al. Regulation effects of various training modes on source-sink relation of cotton[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 819-824.
[65]  Barnawal D, Bharti N, Maji D, et al. 1-Aminocyclopropane- 1-carboxylic acid(ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation[J]. Plant Physiology and Biochemistry, 2012, 58227-235.
[66]  Bange M, Milroy S, Ellis M, et al. Opportunities to reduce the impact of water-logging on cotton[C/OL] // Proceedings of the 15th Australian Agronomy Conference, Lincoln, New Zealand, 15-18 November 2010. (2010-11-18). http://www.regional.org.au/au/asa/2010/crop-production/irrigation/7023_bangem.htm# TopOfPage.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133