Jiang Qun'ou, Deng Xiangzheng, Zhan Jinyan, et al. Climate change and its impacts on the agricultural productivity potential on the Huang-Huai-Hai Plain[J]. Geography and Geo-information Science, 2007, 23(5): 82-85.
Li Lenong, Peng Keqin, Sun Fuzeng. Effects of flooding on yield and quality of cotton[J]. Acta Agronomica Sinica, 2007, 23(5): 82-85.
[5]
Liu Kaiwen, Su Rongrui, Zhu Jianqiang, et al. Dynamic responses of main physiological indices in cotton leaf to waterlogging stress at seedling stage[J]. Chinese Journal of Agrometeorology, 2012, 33(3): 442-447.
[6]
魏和平, 利容千. 淹水对玉米不定根形态结构和 ATP 酶活性的影响[J]. 植物生态学报, 2000, 24(3): 293-297.
[7]
Wei Heping, Li Rongqian. Effect of flooding morphology, structure and ATPase activity in adventitious root apical cells of maize seedlings[J]. Chinese Journal of Plant Ecology, 2000, 24(3): 293-297.
Song Xuezhen, Yang Guozheng, Luo Zhen, et al. Effects of waterlogging at flowering and boll-setting stage on plant growth, some physiological parameters and yield of cotton[J]. China Cotton, 2012, 39(9):5-8.
Zhang Peitong, Xu Lihua,Yang Changqin, et al. Effects of waterlogging on yield and its components of cotton[J]. Jiangsu Journal of Agriculture Science, 2008, 24(6): 785-791.
Wang Liuming, Shen Fafu. Influences of waterlogging and drought on different transgenic Bt cotton cultivars[J]. Cotton Science, 2001, 13(2): 87-90.
[14]
Bange M, Milroy S, Thongbai P. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research, 2004, 88(2):129-142.
[15]
Meyer W, Reicosky D, Barrs H, et al. Physiological responses of cotton to a single waterlogging at high and low N-levels[J]. Plant and Soil, 1987, 102(2): 161-170.
Liu Kaiwen, Zhu Jianqiang, Wu Qixia. Effects of subsurface waterlogging following after surface waterlogging in period of cotton budding to flowering and bearing bolls on leaf photosynthesis[J]. Journal of Irrigation and Drainage, 2010(1): 23-26.
Dong Hezhong, Li Weijiang, Tang Wei, et al. Effects of water-deficit and waterlogging on some physiological characteristics of cotton seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(10): 1695-1699.
Luo Zhen, Dong Hezhong, Li Weijiang, et al. Combined effects of waterlogging and salinity on plant growth and some physiological parameters in cotton seedling leaves[J]. Cotton Science, 2008, 20(3): 203-206.
[22]
Pandey D M, Goswami C L, Kumar B, et al. Hormonal regulation of photosynthetic enzymes in cotton under water stress[J]. Photosynthetica, 2001, 38(3): 403-407.
Guo Wenqi, Zhao Xinhua, Chen Binglin, et al. Effects of nitrogen on cotton(Gossypium hirsutum L.) root growth under short-term waterlogging during flowering and boll-forming stage[J]. Acta Agronomica Sinica, 2009, 35(6): 1078-1085.
Yan Bin, Dai Qiujie, Liu Xiaozhong, et al. Accumulation of superoxide radical in corn leaves during waterlogging[J]. Acta Botanica Sinica, 1995, 37(9): 738-744.
Ahmed F, Rafii M Y, Ismail M R, et al. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects[J]. BioMed Research International, 2013, 2013: 1-10.
Guo Wenqi, Liu Ruixian, Zhou Zhiguo, et al. Effects of nitrogen fertilization on gas exchange and chlorophyll fluorescence parameters of leaf during the flowering and boll-forming stage of cotton under short-term waterlogging[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 362-369.
[31]
Hocking P, Reicosky D, Meyer W. Nitrogen status of cotton subjected to two short term periods of waterlogging of varying severity using a sloping plot water-table facility[J]. Plant and Soil, 1985, 87(3): 375-391.
[32]
Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions[J]. Field Crops Research, 2009, 113(3): 246-255.
[33]
Ashraf M A, Ahmad M S A, Ashraf M, et al. Alleviation of waterlogging stress in upland cotton(Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray[J]. Crop and Pasture Science, 2011, 62(1): 25-38.
[34]
Jackson M B. Ethylene and plant responses to soil waterlogging and submergence[J]. Annu Rev Plant Physiol, 1985, 36(1): 145- 174.
[35]
Vidoz M L, Loreti E, Mensuali A, et al. Hormonal interplay during adventitious root formation in flooded tomato plants[J]. The Plant Journal, 2010, 63(4): 551-562.
[36]
Parent C, Capelli N, Berger A, et al. An overview of plant responses to soil waterlogging[J]. Plant Stress, 2008, 2(1): 20-27.
[37]
Thirunavukkarasu N, Hossain F, Mohan S, et al. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize(Zea mays L.) under waterlogging stress[J]. PloS One, 2013, 8(8): e70433.
[38]
Hattori Y, Nagai K, Furukawa S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1026-1030.
Zhang Yang, Li Ruilian, Zhou Zhonghua, et al. Studies on physiological land biochemical response to waterlogging at bud stage in cotton[C]// China Society of Cotton Sci-tech Annual Meeting Proceedings of 2013. Anyang: CSCS, 2013: 206-212.
Chen Luzhen, Lin Peng, Wang Wenqing. Mechanisms of mangroves waterlogging resistance[J]. Acta Ecologica Sinica, 2006, 26(2): 586-593.
[45]
Xu Kenong, Xu Xia, Fukao T, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103): 705-708.
[46]
Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice[J]. Proceedings of the National Academy of Sciences, 2008, 105(43): 16814-16819.
[47]
Perata P, Voesenek L. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene[J]. Trends in Plant Science, 2007, 12(2): 43-46.
[48]
Christianson J A, Llewellyn D J, Dennis E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton(Gossypium hirsutum L.)[J]. Plant and Cell Physiology, 2010, 51(1): 21-37.
[49]
宋学贞. 硝普钠缓解棉花花铃期淹水伤害的效应研究[D]. 武汉: 华中农业大学, 2013.
[50]
Song Xuezhen. Effects of SNP on reliefing cotton damage caused by waterlogging during boll setting period[D]. Wuhan: Huazhong Agriculture University, 2013.
[51]
Lee Y H, Kim K S, Jang Y S, et al. Global gene expression responses to waterlogging in leaves of rape seedlings[J]. Plant Cell Reports, 2014, 33(2): 289-299.
Dong Hezhong, Li Weijiang, Tang Wei, et al. Effects of retention of vegetative branches on source-sink relation, leaf senescence and lint yield in Bt transgenic hybrid cotton[J]. Scientia Agricultura Sinica, 2007, 40(5): 909-915.
Dong Hezhong. Major biological characteristics of cotton and their application in extensive high-yielding cultivation[J]. China Cotton, 2013, 40(9): 1-4.
Liang Zhejun, Tao Hongbin, Wang Pu. Recovery effects of morphology and photosynthetic characteristics of maize(Zea mays L.) seedlings after waterlogging[J]. Acta Ecologica Sinica, 2009, 29(7): 3977-3986.
[58]
Ellis M H, Millar A A, Llewellyn D J, et al. Transgenic cotton (Gossypium hirsutum) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency[J]. Functional Plant Biology, 2000, 27(11): 1041-1050.
[59]
Liu Peiqing, Sun Feng, Gao Rong, et al. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity[J]. Plant Molecular Biology, 2012, 79(6): 609-622.
[60]
Guo W, Liu R, Zhou Z, et al. Waterlogging of cotton calls for caution with N fertilization[J]. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 2010, 60(5): 450-459.
[61]
Wu Q X, Zhu J Q, Liu K W, et al. Effects of fertilization on growth and yield of cotton after surface waterlogging elimination[J]. Advance Journal of Food Science & Technology, 2012, 4(6): 398-403.
[62]
Wu W M, Li J C, Chen H J, et al. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage[J]. International Journal of Food, Agriculture and Environment, 2013, 11(1): 545-552.
Dong Hezhong, Niu Yuehua, Li Weijiang, et al. Regulation effects of various training modes on source-sink relation of cotton[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 819-824.
[65]
Barnawal D, Bharti N, Maji D, et al. 1-Aminocyclopropane- 1-carboxylic acid(ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation[J]. Plant Physiology and Biochemistry, 2012, 58227-235.
[66]
Bange M, Milroy S, Ellis M, et al. Opportunities to reduce the impact of water-logging on cotton[C/OL] // Proceedings of the 15th Australian Agronomy Conference, Lincoln, New Zealand, 15-18 November 2010. (2010-11-18). http://www.regional.org.au/au/asa/2010/crop-production/irrigation/7023_bangem.htm# TopOfPage.