全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

北极快速变化对北冰洋碳汇机制和过程的影响

DOI: 10.1360/N972014-00397, PP. 3406-3416

Keywords: 北极快速变化,生物泵,陆源有机碳,沉积碳埋藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

北冰洋是全球海洋碳循环研究的关键地区之一,其独特的地理位置决定了它是开展海陆统筹研究碳汇的一个绝佳的场所地形相对封闭,边缘有世界上最大的陆架区,外围有广袤的陆地冻土层和大河输入.近年来,由于全球变暖、海冰消退、北极快速变化所引起的一系列大气、冰雪、海洋、陆地和生物等多圈层相互作用过程的改变,已经对北极地区碳的源、汇效应产生了深刻影响.这种变化不仅体现在由于陆地冻土圈变化所引起的甲烷和二氧化碳释放,而且,随之而来的海水层化、混合和环流变化,陆源有机碳和营养物质入海通量的增加,改变了海洋二氧化碳“物理泵”、“生物泵”和“微型生物碳泵”作用的强度、方式,以及海洋原有的海洋碳储库构成,很可能会对全球海陆碳源汇格局产生重要影响.本文主要从北极快速变化所引起的海洋生物泵过程和陆地碳输入的变化来讨论全球变暖对沉积碳埋藏的影响.

References

[1]  1 Martin J H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 1990, 5: 1-13
[2]  2 Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters. Nature, 1990, 345: 156-158
[3]  3 Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 2000, 407: 695-702
[4]  4 Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 2000, 407: 859-869
[5]  5 Sigman D M, Boyle E A. Palaeoceanography: Antarctic stratification and glacial CO2. Nature, 2001, 412: 606
[6]  6 Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978-1996. J Geophys Res, 1999, 104: 20837-20856
[7]  7 Stroeve J C, Serreze M C, Fetterer F, et al. Tracking the Arctic's shrinking ice cover: Another extreme September minimum in 2004. Geophys Res Lett, 2005, 32: L04501
[8]  8 Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett, 2008, 35: L01703
[9]  9 Wang M, Overland J E. A sea ice free summer Arctic within 30 years? Geophys Res Lett, 2009, 36: L07502
[10]  10 Durate C M, Lenton T M, Wadhams P, et al. Abrupt climate change in the Arctic. Nat Clim Change, 2012, 2: 60-62
[11]  11 Overland J E, Wang M, Walsh J E, et al. Future Arctic climate changes: Adaptation and mitigation time scales. Earth's Future, 2013, 2: 68-74
[12]  12 Grebmeier J M, Moore S E, Overland J E, et al. Biological response to recent Pacific Arctic sea ice retreats. EOS Trans Am Geophys Union, 2010, 91: 161-168
[13]  13 Grebmeier J M. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annu Rev Mar Sci, 2012, 4: 63-78
[14]  14 Chen L Q, Gao Z Y, Yang X L, et al. Prospects of Research on carbon cycle in the Arctic (in Chinese). Chin J Polar Res, 2004, 16: 171-180 [陈立奇, 高众勇, 杨绪林, 等. 北极地区碳循环研究意义和展望. 极地研究, 2004, 16: 171-
[15]  15 Chen L Q. Variability and vulnerability of carbon pools in Southern Ocean and western Arctic Ocean and their exploratory engineering technology (in Chinese). Eng Sci, 2009, 11: 79-85 [陈立奇. 极区海洋碳池变化性和脆弱性及其探测工程技术. 中国工程科学, 2009, 11: 79-
[16]  16 Cai W J, Chen L Q, Chen B S, et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science, 2010, 329: 556-559
[17]  17 Bates N R, Cai W J, Mathis J T. The ocean carbon cycle in the western Arctic Ocean: Distributions and air-sea fluxes of carbon dioxide. Oceanogr-Oceanogr Soc, 2011, 24: 186-201
[18]  18 Arrigo K R, van Dijken G, Pabi S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett, 2008, 35: L19603
[19]  19 Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8: 593-599
[20]  20 Jiao N Z, Tang K, Cai H Y, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat Rev Microbiol, 2011, 9: 75
[21]  21 Rudels B, Schauer U, Bj?rk, G, et al. Observations of water masses and circulation in the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci, 2013, 9: 147-169
[22]  22 Bates N R, Moran S B, Hansell D A, et al. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys Res Lett, 2006, 33: L23609
[23]  23 Christensen T R, Johansson T, ?kerman H J, et al. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett, 2004, 31: L04501
[24]  24 Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 2010, 327: 1246-1250
[25]  25 Oechel W C, Laskowski C A, Burba G, et al. Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem. J Geophys Res, 2014, 119: 323-339
[26]  26 Lawrence D M, Slater A G, Tomas R A, et al. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett, 2008, 35: L11506
[27]  27 Frey K E, McClelland J W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process, 2009, 23: 169-182
[28]  28 Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Glob Biogeochem Cycles, 2002, 16: 1098
[29]  29 Rachold V, Eicken H, Gordeev V V, et al. Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald R W, eds. The Organic Carbon Cycle in the Arctic Ocean. Berlin: Springer-Verlag, 2004. 33-55
[30]  30 Stein R, Macdonald R W. Organic carbon budget: Arctic Ocean vs. global ocean. In: Stein R, Macdonald R W, eds. The Organic Carbon Cycle in the Arctic Ocean. Berlin: Springer-Verlag, 2004. 315-322
[31]  31 Stein R. Arctic Ocean Sediments: Processes, Proxies, and Palaeoenvironment. Hungray: Elsevier, 2008
[32]  32 Rachold V, Grigoriev M N, Are F E, et al. Coastal erosion vs. riverine sediment discharge in the Arctic Shelf seas. Int J Earth Sci, 2000, 89: 450-460
[33]  33 Macdonald R W, Solomon S M, Cranston R E, et al. A sediment and organic carbon budget for the Canadian Beaufort Shelf. Mar Geol, 1998, 144: 255-273
[34]  34 Pfirman S L, Clolny R, Nürnberg D, et al. Reconstructing the origin and trajectory of drifting Arctic sea ice. J Geophys Res, 1997, 102: 12575-12586
[35]  35 N?rgaard-Pedersen N, Spielhagen R F, Thiede J, et al. Central Arctic surface ocean environment during the past 80000 years. Palaeoceanography, 1998, 13: 193-204
[36]  36 Chen L Q, Gao Z Y, Yang X L, et al. Comparison of air-sea fluxes of CO2 in the southern Ocean and the western Arctic Ocean. Acta Oceanol Sin, 2004, 23: 647-653
[37]  37 Gao Z, Chen L, Sun H, et al. Distributions and air-sea fluxes of carbon dioxide in the western Arctic Ocean. Deep Sea Res Pt II, 2012, 81: 46-52
[38]  38 Walsh J J. Arctic carbon sinks: Present and future. Glob Biogeochem Cycles, 1989, 3: 393-411
[39]  39 Luchetta A, Lipizer M, Socal G. Temporal evolution of primary production in the central Barents Sea. J Marine Syst, 2000, 27: 177-193
[40]  40 Smith S V. Parsing the oceanic calcium carbonate cycle: A net atmospheric carbon dioxide source, or a sink? L&O e-Books. Association for the Sciences of Limnology and Oceanography (ASLO) Waco, TX. 10.4319/svsmith.2013.978-0-9845591-2-1. 2013
[41]  41 Anderson L G, Kaltin S. Carbon fluxes in the Arctic Ocean—Potential impact by climate change. Polar Res, 2001, 20: 225-232
[42]  42 Grebmeier J M, Overland J E, Moore S E, et al. A Major ecosystem shift observed in the northern Bering Sea. Science, 2006, 311: 1461-1464
[43]  43 Reid P C, Johns D G, Edwards M, et al. A biological consequence of reducing Arctic ice cover: Arrival of the Pacific diatom Neodenticulaseminae in the North Atlantic for the first time in 800,000 years. Glob Change Biol, 2007, 13: 1910-1921
[44]  44 Hill V, Cota G, Stockwell D. Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas. Deep Sea Res Pt II, 2005, 52: 3369-3385
[45]  45 Feder H M, Naidu A S, Jewett S C, et al. The northeastern Chukchi Sea: Benthos-environmental interactions. Mar Ecol-Prog Ser, 1994, 111: 171-190
[46]  46 Cota G F, Pomeroy L R, Harrison W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol-Prog Ser. Oldendorf, 1996, 135: 247-258
[47]  47 Steele M, Ermold W, Zhang J. Arctic Ocean surface warming trends over the past 100 years. Geophys Res Lett, 2008, 35: L02614
[48]  48 Liu Z L, Chen J F, Zhang T, et al. The size-fractionated chlorophyll a concentration and primary productivity in the Chukchi Sea and its northern Chukchi Plateau (in Chinese). Acta Ecol Sin, 2007, 27: 4953-4962 [刘子琳, 陈建芳, 张涛, 等. 楚科奇海及其海台区粒度分级叶绿素口和初级生产力. 生态学报, 2007, 27: 4953-
[49]  49 Li H L, Chen J F, Jin H Y, et al. Biogenic constituents of surface sediments in the Chukchi Sea: Implications for organic carbon burying efficiency (in Chinese). Acta Oceanol Sin, 2008, 30: 165-17 [李宏亮, 陈建芳, 金海燕, 等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义. 海洋学报, 2008, 30: 165-
[50]  50 Yang Q L, Lin G M, Lin M, et al. Species composition and distribution of phytoplankton in chukchi sea and bering sea (in Chinese). Chin J Polar Res, 2002, 14: 113-125 [杨清良, 林更铭, 林茂. 楚科奇海和白令海浮游植物的种类组成与分布. 极地研究, 2002, 14: 113-
[51]  51 Ashjian C J, Gallager M, Plourde S. Transport of plankton and particles between the Chukchi and Beaufort Seas during summer 2002, described using a Video Plankton Recorder. Deep Sea Res Pt II, 2005, 52: 3259-3280
[52]  52 Gradinger R. Sea-icealgae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Res Pt II, 2008, doi: 10.1016/j.dsr2.2008.10.016
[53]  53 Riebesell U. Particle aggregation during a diatom bloom. 11. Biological aspects. Mar Ecol-Prog Ser, 1991, 69: 281-291
[54]  54 Legendre L, Ackley S F, Dieckmann G S, et al. Ecology of sea ice biota. Polar Biol, 1992, 12: 429-444
[55]  55 Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res Pt II, 1997, 44: 1623-1644
[56]  56 Anderson O G N. Primary production, chlorophyll, light, and nutrients beneath the arctic sea ice. In: Herman Y, ed. The Arctic Seas. New York: Springer, 1989. 147-191
[57]  57 Welch H E, Bergmann M A. Seasonal development of ice algae and its prediction from environmental factors near Resolute, NWT, Canada. Can J Fish Aquat Sci, 1989, 46: 1793-1804
[58]  58 Lizotte M P. The contributions of sea ice algae to Antarctic marine primary production. Am Zool, 2001, 41: 57-73
[59]  59 Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region. Nature, 2003, 425: 947-950
[60]  60 Gobeil C, Sundby B, Macdonald R W, et al. Recent change in organic carbon flux to Arctic Ocean deep basins: Evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys Res Lett, 2001, 28: 1743-1746
[61]  61 Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting Arctic sea ice. Science, 2013, 339: 1430-1432
[62]  62 Xiao X, Fahl K, Stein R. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage. Quat Sci Rev, 2013, 79: 40-52
[63]  63 Brown K A, McLaughlin F, Tortell P D, et al. Determination of particulate organic carbon sources to the surface mixed layer of the Canada Basin, Arctic Ocean. J Geophys Res, 2014, 119, 1084-1102
[64]  64 Walsh J J, Dieterle D A. Decadal shifts in biophysical forcing of Arctic marine food webs: Numerical consequence. J Geophys Res, 2004, 109: C05031
[65]  65 Grebmeier J M, Cooper L W, Feder H M. Ecosystem dynamics of the Pacific-influenced northern Bering and Chuchi Seas in the Amerasian Arctic. Prog Oceanogr, 2006, 71: 331-361
[66]  66 Li H L, Chen J F, Liu Z L, et al. Size structure of particulate biogenic silica in the Chukchi Sea and Southern Canadian Basin (in Chinese). Prog Nat Sci, 2007, 17: 72-78 [李宏亮, 陈建芳, 刘子琳, 等. 北极楚科奇海和加拿大海盆南部颗粒生物硅的粒级结构. 自然科学进展, 2007, 17: 72-
[67]  67 Walsh J J, McRoy C P. Ecosystem analysis in the southeastern Bering Sea. Cont Shelf Res, 1986, 5: 259-288
[68]  68 Chen M, Huang Y P, Guo L, et al. Biological productivity and carbon cycling in the Arctic Ocean. Chin Sci Bull, 2002, 47: 1037-1040
[69]  69 Chen J F, Zhang H S, Jin H Y, et al. Accumulation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget (in Chinese). Chin J Polar Res, 2004, 16: 93-201 [陈建芳, 张海生, 金海燕, 等. 北极陆架沉积有机碳埋藏及其在全球碳循环中的作用. 极地研究, 2004, 16: 93-
[70]  70 Li X N, Zhou W H, Liu S M, et al. Sediment chlorophyll in HAB(Harmful Algal Bloom) area of East China Sea (in Chinese). Chin J Appl Ecol, 2003, 14: 1102-1106 [李肖娜, 周伟华, 刘素美, 等. 东海赤潮高发区沉积物中叶绿素的分析. 应用生态学报, 2003, 14: 1102-
[71]  71 Liu Z L, Chen J F, Liu Y L, et al. The size-fractionated chlorophyll a and primary productivity in the surveyed area of the western Arctic Ocean during the summer of 2008 (in Chinese). Acta Oceanol Sin, 2011, 33: 124-133 [刘子琳, 陈建芳, 刘艳岚, 等. 2008年夏季西北冰洋观测区叶绿素a 和初级生产力粒级结构. 海洋学报, 2011, 33: 124-
[72]  72 Cranston R E. Organic carbon burial rates across the Arctic Ocean from the 1994 Arctic Ocean Section expedition. Deep Sea Res Pt II, 1997, 44: 1705-1723
[73]  73 Yang W F, Chen M, Liu G S, et al. Distribution of radionuclides at sediments and its tracing to the deposition environment in Chukqi Shelf (in Chinese). Prog Nat Sci, 2002, 12: 515-518 [杨伟锋, 陈敏, 刘广山, 等. 楚克奇海陆架区沉积物中核素的分布及其对沉积环境的示踪. 自然科学进展, 2002, 12: 515-
[74]  74 Nuttall M. Encyclopedia of the Arctic. New York: Routledge, 2005
[75]  75 Lawrence D M, Slater A G. A projection of severe near surface permafrost degradation during the 21st century. Geophys Res Lett, 2005, 32: L24401
[76]  76 Vogel J, Schuur E A G, Trucco C, et al. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. J Geophys Res, 2009, 114: G04018
[77]  77 Macdonald R W, Harner T, Fyfe J. Recent climate change in the Canadian Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ, 2005, 342: 5-86
[78]  78 Shiklomanov I A. Comprehensive Assessment of the Freshwater Resources of the World: Assessment of Water Resources and Water Availability in the World. Geneva: WMO, 1998. 88
[79]  79 Bates N R. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J Geophys Res, 2006, 111: C10013
[80]  80 Eicken H. The role of Arctic Sea ice in transporting and cycling terrigenous organic matter. In: Stein R, Macdonald R W, eds. The Organic Carbon Cycle in the Arctic Ocean. Berlin: Springer-Verlag. 2004. 45-53
[81]  81 Macdonald R W, Naidu A S, Yunker M B, et al. The Beaufort Sea: Distribution, sources, fluxes, and burial of organic carbon. In: Stein R, Macdonald R W, eds. The Organic Carbon Cycle in the Arctic Ocean. Berlin: Springer-Verlag, 2004. 177-192
[82]  82 Go?i M A, Yunker M B, Macdonald R W, et al. Distribution and sources of organic biomarkers in arctic sediments from Mackenzie River and Beaufort shelf. Mar Chem, 2000, 71: 23-51
[83]  83 Belicka L L, Macdonald R W, Yunker M B, et al. The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments. Mar Chem, 2004, 86: 65-88
[84]  84 Yamamoto M, Okino T, Sugisaki S, et al. Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean. Org Geochem, 2008, 39: 754-763
[85]  85 Stein R, Korolev S. Shelf-to-basin sediment transport in the eastern Arctic Ocean. Report Polar Res, 1994, 144: 87-100
[86]  86 Reimnitz E, Graves S M, Barnes P W. Beaufort Sea coastal erosion, sediment flux, shoreline evolution and the erosional shelf profile. US Geological Survey to Accompany Map I-1182-G, 1988. 1-22
[87]  87 Eicken H, Kolatschek J, Freitag J, et al. A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice. Geophys Res Lett, 2000, 27: 1919-1922
[88]  88 Darby D A, Naidu A S, Mowatt T C. Sediment composition and sedimentary processes in the Arctic Ocean. In: Herman Y, ed. The Arctic Seas. New York: Springer 1989. 657-720
[89]  89 Schubert C J, Stein R. Deposition of organic carbon in Arctic Ocean sediments: terrigenous supply vs. marine productivity. Org Geochem, 1996, 24: 421-436
[90]  90 Stein R, Macdonald R W. The Organic Carbon Cycle in the Arctic Ocean. Chapter 1. The Arctic Ocean: Boundary Conditions and Background Information. Berlin: Springer-Verlag, 2004. 1-32
[91]  91 Berger W H, Smetacek V S, Wefer G. Productivity of the Ocean: Present and Past. New York: Wiley, 1989. 429-455
[92]  92 Tedesco L, Vichi M, Thomas D N. Process studies on the ecological coupling between sea ice algae and phytoplankton. Ecol Model, 2012, 226: 120-138
[93]  93 Stein R, Grobe H, Wahsner M. Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments. Mar Geol, 1994, 3-4: 269-285
[94]  94 Fahl K, Stein R. Modern organic carbon deposition in the Laptev Sea and adjacent continental slope: Surface water productivity vs. terrigenous input. Org Geochem, 1997, 26: 379-390
[95]  95 Boucsein B, Stein R. Particulate organic matter in the surface sediments of the Laptev Sea (Arctic Ocean): Application of maceral analysis as organic carbon source indicator. Mar Geol, 2000, 162: 573-586
[96]  96 Belicka L L, Macdonald R W, Harvey H R. Sources and transport of organic carbon to shelf, slope, and basin surface sediments of the Arctic Ocean. Deep Sea Res Pt I, 2002, 49: 1463-1483
[97]  97 Chen L Q, Gao Z Y, Wang W Q, et al. Characteristics of pCO2 in surface water of the Bering Abyssal Plain and their effects on carbon cycle in the western Arctic Ocean. Sci China Ser D-Earth Sci, 2004, 47: 1035-1044
[98]  98 Kirchman D L, Morán X A G, Ducklow H. Microbial growth in the polar oceans—Role of temperature and potential impact of climate change. Nat Rev Microbiol, 2009, 7: 451-459

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133