1 Golod S V, Prinz V Y, Mashanov V I, et al. Fabrication of conducting GeSi/Si micro-and nanotubes and helical micro-coils. Semicond Sci Technol, 2001, 16: 181-185
[2]
2 Huang G, Mei Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24: 2517-2546
[3]
3 Prinz V Y, Seleznev V A, Gutakovsky A K, et al. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E, 2000, 6: 828-831
[4]
4 Prinz V Y. A new concept in fabricating building blocks for nanoelectronic and nanomechanic devices. Microelectron Eng, 2003, 69: 466-475
[5]
5 Nastaushev Y V, Prinz V Y, Svitasheva S N. A technique for fabricating Au/Ti micro-and nanotubes. Nanotechnology, 2005, 16: 908-912
[6]
6 Songmuang R, Jin-Phillipp N Y, Mendach S, et al. Single rolled-up SiGe/Si microtubes: Structure and thermal stability. Appl Phys Lett, 2006, 88: 021913
[7]
7 Songmuang R, Deneke C, Schmidt O G. Rolled-up micro-and nanotubes from single-material thin films. Appl Phys Lett, 2006, 89: 223109
[8]
8 Mei Y, Huang G, Solovev A A, et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater, 2008, 20: 4085-4090
[9]
9 Mendach S, Songmuang R, Kiravittaya S, et al. Light emission and wave guiding of quantum dots in a tube. Appl Phys Lett, 2006, 88: 111120
[10]
10 Songmuang R, Rastelli A, Mendach S, et al. SiOx/Si radial superlattices and microtube optical ring resonators. Appl Phys Lett, 2007, 90: 91905
[11]
11 Cavallo F, Songmuang R, Schmidt O G. Fabrication and electrical characterization of Si-based rolled-up microtubes. Appl Phys Lett, 2008, 93: 143113
[12]
12 Müller C, Khatri M S, Deneke C, et al. Tuning magnetic properties by roll-up of Au/Co/Au films into microtubes. Appl Phys Lett, 2009, 94: 102510
[13]
13 Solovev A A, Mei Y, Bermúdez Ure?a E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small, 2009, 5: 1688-1692
[14]
14 Mei Y, Solovev A A, Sanchez S, et al. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem Soc Rev, 2011, 40: 2109-2119
[15]
15 Solovev A A, Sanchez S, Pumera M, et al. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Funct Mater, 2010, 20: 2430-2435
[16]
16 Soler L, Martinez-Cisneros C, Swiersy A, et al. Thermal activation of catalytic microjets in blood samples using microfluidic chips. Lab Chip, 2013, 13: 4299-4303
[17]
17 Ji H, Wu X, Fan L, et al. Self-wound composite nanomembranes as electrode materials for lithium ion batteries. Adv Mater, 2010, 22: 4591-4595
[18]
18 Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891-2959
[19]
19 Reddy M V, Subba Rao G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113: 5364-5457
[20]
20 Cavallo F, Songmuang R, Ulrich C, et al. Rolling up SiGe on insulator. Appl Phys Lett, 2007, 90: 193120
[21]
21 Schmidt O G, Eberl K. Nanotechnology: Thin solid films roll up into nanotubes. Nature, 2001, 410: 168
[22]
22 Huang M, Boone C, Roberts M, et al. Nanomechanical architecture of strained bilayer thin films: From design principles to experimental fabrication. Adv Mater, 2005, 17: 2860-2864
[23]
23 Vaccaro P O, Kubota K, Aida T. Strain-driven self-positioning of micromachined structures. Appl Phys Lett, 2001, 78: 2852
[24]
24 Jin-Phillipp N Y, Thomas J, Kelsch M, et al. Electron microscopy study on structure of rolled-up semiconductor nanotubes. Appl Phys Lett, 2006, 88: 33113
[25]
25 Thurmer D J, Deneke C, Mei Y, et al. Process integration of microtubes for fluidic applications. Appl Phys Lett, 2006, 89: 223507
[26]
28 Huang M, Cavallo F, Liu F, et al. Nanomechanical architecture of semiconductor nanomembranes. Nanoscale, 2011, 3: 96-120
[27]
29 Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208-212
[28]
30 Hawkeye M M, Brett M J. Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films. J Vac Sci Technol A, 2007, 25: 1317
[29]
31 Li J, Zhang J, Gao W, et al. Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv Mater, 2013, 25: 3715-3721
[30]
32 Vahala K J. Optical microcavities. Nature, 2003, 424: 839-846
[31]
33 Richtmyer R D. Dielectric resonators. J Appl Phys, 1939, 10: 391
[32]
34 Li X. Self-rolled-up microtube ring resonators: A review of geometrical and resonant properties. Adv Opt Photonics, 2011, 3: 366-387
[33]
35 Wang J, Zhan T, Huang G, et al. Optical microcavities with tubular geometry: Properties and applications. Laser Photonics Rev, 2014, 8: 521-547
[34]
36 Huang G S, Kiravittaya S, Bola?os Qui?ones V A, et al. Optical properties of rolled-up tubular microcavities from shaped nanomembranes. Appl Phys Lett, 2009, 94: 141901
[35]
37 Bola?os Q V, Huang G, Plumhof J D, et al. Optical resonance tuning and polarization of thin-walled tubular microcavities. Opt Lett, 2009, 34: 2345-2347
[36]
38 B?ttner S, Li S, Trommer J, et al. Sharp whispering-gallery modes in rolled-up vertical SiO2 microcavities with quality factors exceeding 5000. Opt Lett, 2012, 37: 5136-5138
[37]
39 Huang G, Bola?os Qui?ones V A, Ding F, et al. Rolled-up optical microcavities with subwavelength wall thick-nesses for enhanced liquid sensing applications. ACS Nano, 2010, 4: 3123-3130
[38]
40 Zhan T, Xu C, Zhao F, et al. Optical resonances in tubular microcavities with subwavelength wall thicknesses. Appl Phys Lett, 2011, 99: 211104
[39]
41 B?ttner S, Li S, Jorgensen M R, et al. Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration. Appl Phys Lett, 2013, 102: 251119
[40]
42 Trommer J, B?ttner S, Li S, et al. Observation of higher order radial modes in atomic layer deposition reinforced rolled-up microtube ring resonators. Opt Lett, 2014, 39: 6335-6338
[41]
43 Wang J, Zhan T, Huang G, et al. Tubular oxide microcavity with high-index-contrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt Express, 2012, 20: 18555-18567
[42]
44 Zhong J, Wang J, Huang G, et al. Effect of physisorption and chemisorption of water on resonant modes of rolled-up tubular microcavities. Nanoscale Res Lett, 2013, 8: 531
[43]
45 Madani A B, B?ttner S, Jorgensen M R, et al. Rolled-up TiO2 Optical microcavities for telecom and visible photonics. Opt Lett, 2014, 39: 189-192
[44]
46 Bernardi A, Kiravittaya S, Rastelli A, et al. On-chip Si/SiOx microtube refractometer. Appl Phys Lett, 2008, 93: 0941069
[45]
47 Bola?os Qui?ones V A, Ma L, Li S, et al. Localized optical resonances in low refractive index rolled-up microtube cavity for liquid-core optofluidic detection. Appl Phys Lett, 2012, 101: 151107
[46]
48 Harazim S M, Bola?os Qui?ones V A, Kiravittaya S, et al. Lab-in-a-tube: On-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab Chip, 2012, 12: 2649-2655
[47]
49 Ma L, Li S, Qui?ones V A B, et al. Dynamic molecular processes detected by microtubular opto-chemical sensors self-assembled from prestrained nanomembranes. Adv Mater, 2013, 25: 2357-2361
[48]
50 Zhang J, Zhong J, Fang Y F, et al. Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing. Nanoscale, 2014, 6: 13646-13650
[49]
51 Huang G, Mei Y, Thurmer D J, et al. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab Chip, 2009, 9: 263-268
[50]
52 Smith E J, Schulze S, Kiravittaya S, et al. Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett, 2011, 11: 4037-4042
[51]
53 Xi W, Schmidt C K, Sanchez S, et al. Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. Nano Lett, 2014, 14: 4197-4204
[52]
54 Koch B, Sanchez S, Schmidt C K, et al. Confinement and deformation of single cells and their nuclei inside size-adapted microtubes. Adv Healthc Mater, 2014, 3: 1753-1758
[53]
55 Sigusch B W, Kranz S, Klein S, et al. Colonization of enterococcus faecalis in a new SiO/SiO2-microtube in vitro model system as a function of tubule diameter. Dent Mater, 2014, 30: 661-668
[54]
56 Magdanz V, Koch B, Sanchez S, et al. Sperm dynamics in tubular confinement. Small, 2015, 11: 781-785
[55]
57 Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4 based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater, 2006, 5: 567-573
[56]
58 Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
[57]
59 Long J W, Dunn B, Rolison D R, et al. Three-dimensional battery architectures. Chem Rev, 2004, 104: 4463-4492
[58]
60 Zhukovskii Y F, Balaya P, Kotomin E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys Rev Lett, 2006, 96: 58302
[59]
26 Hu J Q, Bando Y, Zhan J H, et al. Single-crystalline nanotubes of IIB-VI semiconductors. Appl Phys Lett, 2005, 87: 113107
[60]
27 Liu F, Lagally M G, Zang J. Nanomechanical architectures: Mechanics-driven fabrication based on crystalline membranes. MRS Bull, 2009, 34: 190-195
[61]
61 Chen Y, Yan C, Schmidt O G. Strain-driven formation of multilayer graphene/GeO2 tubular nanostructures as high-capacity and very long-life anodes for lithium-ion batteries. Adv Energy Mater, 2013, 3: 1269-1274
[62]
62 Feng J K, Lai M O, Lu L. Influence of grain size on lithium storage performance of germanium oxide films. Electrochim Acta, 2012, 62: 103-108
[63]
63 Sun X, Yan C, Chen Y, et al. Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv Energy Mater, 2014, 4: 1300912
[64]
64 Liu X, Zhang J, Si W, et al. High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life. Nanoscale, 2015, 7: 282-288
[65]
65 Zhang L, Deng J, Liu L, et al. Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv Mater, 2014, 26: 4527-4532
[66]
66 Huang G, Wang J, Mei Y. Material considerations and locomotive capability in catalytic tubular microengines. J Mater Chem, 2012, 22: 6519-6525
[67]
67 Sanchez S, Solovev A A, Harazim S M, et al. Microbots swimming in the flowing streams of microfluidic channels. J Am Chem Soc, 2011, 133: 701-703
[68]
68 Li J, Lu B, Shen Z, et al. Magnetic and meniscus-effect control of catalytic rolled-up micromotors. Microelectron Eng, 2011, 88: 1792-1794
[69]
69 Harazim S M, Xi W, Schmidt C K, et al. Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes. J Mater Chem, 2012, 22: 2878-2884
[70]
70 Giudicatti S, Marz S M, Soler L, et al. Photoactive rolled-up TiO2 microtubes: Fabrication, characterization and applications. J Mater Chem C, 2014, 2: 5892-5901