全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

陆海统筹研发碳汇

DOI: 10.1360/N972015-00027, PP. 3399-3405

Keywords: 碳汇,碳循环,微型生物碳泵,陆海统筹

Full-Text   Cite this paper   Add to My Lib

Abstract:

人类活动引起的大气CO2浓度增加正在加剧全球气候变化,因而全球碳循环和碳汇研究广受关注,它不仅是科学问题,也是关乎经济和社会发展的问题.碳汇研究涉及大气、陆地、海洋等各圈层.陆地向海洋输出的碳通量,与陆-气界面、海-气界面相当;但大部分陆地上形成的有机碳,在输入河流和近海时发生了改变,不仅无法形成碳汇,反而引发河口碳源效应.因此,系统开展陆海统筹协同研究,对于全面认识碳汇形成过程与调控机制十分必要.新近提出的“微型生物碳泵(microbialcarbonpump,MCP)”理论为开展陆海统筹研发碳汇奠定了基础,可望以MCP为突破口,通过学科交叉研究和“产、学、研、政、用”结合,实现协同创新,为发展低碳经济提供科技支撑.

References

[1]  4 Hunt J M. Distribution of carbon in earth' crust. Bull Am Assoc Petrol Geol, 1972, 56: 2273-2277
[2]  5 Bolin B. How much CO2 will remain in the atmosphere? In: Bolin B, Doos B R, Jagar J, et al., eds. The Greenhouse Effect, Climatic Change, and Ecosystems. New York: Wiley, 1986. 93-155
[3]  6 Schlesinger W H, Bernhardt E S. Biogeochemistry, An Analysis of Global Change. 2nd ed. San Diego, California: Academic Press, 1997
[4]  7 Smith T, Cramer W, Dixon R, et al. The global terrestrial carbon cycle. Water Air Soil Pollut, 1993, 70: 19-38
[5]  8 Olson J S, Watts J A, Allison L J. Carbon in Live Vegetation of Major World Ecosystems. Oak Ridge National Laboratory: Oak Ridge, 1983
[6]  9 Houghton R A. Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, et al., eds. Soils and Global Change. Boca Raton: Lewis Publishers, 1995. 45-65
[7]  10 Turner B L. The Earth as Transformed by Human Action: Global and Regional Changes in The Biosphere over The Past 300 Years. Cambridge, UK: Cambridge University Press, 1990
[8]  11 Schlesinger W H. Carbon balance in terrestrial detritus. Annu Rev Ecol Syst, 1977, 8: 51-81
[9]  12 Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156-159
[10]  13 Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world. Soi Sci Soc Am J, 1993, 57: 192-194
[11]  14 Parton W J, Schimel D S, Cole C, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J, 1987, 51: 1173-1179
[12]  15 Fang J Y, Guo Z D. Looking for missing carbon sinks from terrestrial ecosystems (in Chinese). Chin J Nat, 2007, 29: 1-6 [方精云, 郭兆迪. 寻找失去的陆地碳汇. 自然杂志, 2007, 29: 1-
[13]  16 Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1013
[14]  17 Watson R T, Noble I R, Bolin B, et al. Intergovernmental Panel on Climate Change Special Report; Land use, land-Use Change and Forestry. Cambridge, UK: Cambridge University Press, 2000
[15]  18 Cao M, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol, 1998, 4: 185-198
[16]  19 Fang J Y, Piao S L, Zhao S Q. The carbon sink the role of the middle and high latitudes terrestrial ecosystems in the northern hemisphere (in Chinese). Acta Phytoecol Sin, 2001, 25: 594-602 [方精云, 朴世龙, 赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报, 2001, 25: 594-
[17]  20 Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycle, 1995, 9: 23-36
[18]  21 Gurney K R, Law R M, Denning A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 2002, 415: 626-630
[19]  22 Scurlock J M, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol, 2002, 8: 736-753
[20]  23 Nilsson S, Jonas M, Stolbovoi V, et al. The missing “missing sink”. Forest Chron, 2003, 79: 1071-1074
[21]  24 Houghton R. Aboveground forest biomass and the global carbon balance. Glob Change Biol, 2005, 11: 945-958
[22]  25 Wang Y, Cao S. Carbon sequestration may have negative impacts on ecosystem health. Environ Sci Technol, 2011, 45: 1759-1760
[23]  26 Chisholm S W. Oceanography: stirring times in the Southern Ocean. Nature, 2000, 407: 685-687
[24]  27 Raven J, Falkowski P. Oceanic sinks for atmospheric CO2. Plant Cell Environ, 1999, 22: 741-755
[25]  33 Jiao N Z. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump (in Chinese). Sci Sin Terrae, 2012, 42: 1473-1486 [焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用. 中国科学: 地球科学, 2012, 42: 1473-
[26]  34 Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 2013, 6: 597-607
[27]  35 Rosemond A D, Benstead J P, Bumpers P M, et al. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 2015, 347: 1142-1145
[28]  1 IPCC, Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, Swart R, et al., eds. Climate Change. Cambridge, UK: Cambridge University Press, 2001. 2
[29]  2 Jones N. Troubling milestone for CO2. Nat Geosci, 2013, 6: 589
[30]  3 Geng Y B, Dong Y S, Meng W Q. Processes of terrestrial carbon cycles studies (in Chinese). Prog Geogr, 2000, 19: 297-306 [耿元波, 董云社, 孟维奇. 陆地碳循环研究进展. 地理科学进展, 2000, 19: 297-
[31]  28 Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281: 200-206
[32]  29 Houghton J, Ding Y, Griggs D, et al. Climate Change 2001: The Scientific Basis. Cambridge, UK and New York: Cambridge University Press, 2001
[33]  30 Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters. J Oceanogr, 2003, 59: 129-147
[34]  31 Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8: 593-599
[35]  32 Rothman D H, Hayes J M, Summons R E. Dynamics of the neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2003, 100: 8124-8129
[36]  36 Guenet B, Danger M, Abbadie L, et al. Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 2010, 91: 2850-2861
[37]  37 Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA, 2011, 108: 1973-1981
[38]  38 Chen C-T A, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res Part II: Topical Stud Oceanogr, 2009, 56: 578-590
[39]  39 Yuan X, Yin K, Harrison P J, et al. Bacterial production and respiration in subtropical Hong Kong waters: Influence of the Pearl River discharge and sewage effluent. Aquat Microb Ecol, 2010, 58: 167-179
[40]  40 Benner R. Biosequestration of carbon by heterotrophic microorganisms. Nat Rev Microbiol, 2011, 9: 75
[41]  41 Liang C, Balser T C. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat Rev Microbiol, 2010, 9: 75
[42]  42 Taylor P G, Townsend A R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 2010, 464: 1178-1181
[43]  43 Luan J, Qiu H G, Jing Y, et al. Decomposition of factors contributed to the increase of China's chemical fertilizer use and projections for future fertilizer use in China (in Chinese). J Nat Res, 2013, 28: 1869-1878 [栾江, 仇焕广, 井月, 等. 我国化肥施用量持续增长的原因分解即趋势预测. 自然资源学报, 2013, 28: 1869-
[44]  44 Yuan J Z, Li L H. The effect of non-point source agricultural pollution on water body and its control (in Chinese). Inner Mongolia Agric Sci Tech, 2009, 1: 29-31 [袁金柱, 李利华. 我国农业面源污染对水体的影响及防治措施. 内蒙古农业科技, 2009, 1: 29-
[45]  45 Ti C, Pan J, Xia Y, et al. A nitrogen budget of mainland China with spatial and temporal variation. Biogeochemistry, 2012, 108: 381-394
[46]  46 Hongkan G. The maxium value of dissolved oxygen in its vertical distribution in Yellow Sea. Acta Oceanol Sin, 1980, 2: 70-79
[47]  47 Zhang J, Liu S, Ren J, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the east China Sea shelf. Prog Oceanogr, 2007, 74: 449-478
[48]  48 Li X, Bianchi T S, Yang Z, et al. Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils. J Marine Syst, 2011, 86: 57-68
[49]  49 Jiao N, Robinson C, Azam F, et al. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 2014, 11: 5285-5306
[50]  50 Jiao N, Tang K, Cai H, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat Rev Microbiol, 2010, 9: 75
[51]  51 Jiao N, Zheng Q. The microbial carbon pump: From genes to ecosystems. Appl Environ Microbiol, 2011, 77: 7439-7444
[52]  52 Arrigo K R. Marine microorganisms and global nutrient cycles. Nature, 2015, 437: 349-355
[53]  53 Bowler C, Karl D M, Colwell R R. Microbial oceanography in a sea of opportunity. Nature, 2009, 459: 180-184
[54]  54 Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton. Science, 2004, 305: 354-360
[55]  55 Simon N, Cras A L, Foulon E, et al. Diversity and evolution of marine phytoplankton. C R Biol, 2009, 332: 159-170

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133