|
科学通报 1986
Kergin插值算子的扩张, PP. 805-808 Abstract: 在1978年,Kergin(又见文献[2])引入了一种对多变量光滑函数插值的新方法。这一方法是Lagrange插值的一种自然推广。现在这种插值称做Kergin插值。我们先来引进一些记号。令R~k是k维实向量空间。对于x∈R~k,我们用x_i表示x的第i个分量。对于两个向量x及y,其内积记为x·y=Σx_iy_i。令e~i为第i个分量为1其余分量为0的向量。对任意y∈R~k\{o},函数f的方向导数D_yf定义为
|