|
科学通报 1995
关于方程|Aut(G)|=p~2q~2的解, PP. 2124-2124 Abstract: 1结果我们关心如下问题给定有限群G,确定有限群X,使得Aut(X)=G,而Aut(X)表示X的全自同构群.Iyer证明了上述方程的解至多有有限个.对于任意固定的正整数n,同样的结论对方程|Aut(X)|=n成立.n的某些特殊情形已被研究,Machale和Curran证明了,对任一奇素数P,|Aut(X)|=P~m(1≤m≤5)无解;Flym给出|Aut(X)|=2~5的全部解;n=p~2q(p和q是不同的素数)在文献[5]和[6]中被研究,本文利用文献[7]的结果,完整地解决了n=p~2q~2的情形.我们用r_1,r_2和r_3分别表示形如4q~2+1,2q~2+1和2q+1的素数,而q为奇素数.本文的
|