|
科学通报 1994
符号为实值函数的多复变Toeplitz算子的谱与本质谱, PP. 2223-2223 Keywords: Toeplitz算子,谱,本质谱,多复变量 Abstract: 设B是C~n中的单位球,S是单位球面,dσ是S上的旋转不变测度,dv是B上的规范Lebesgue测度.记L~P(S)=L~P(S,dσ),L~P(B)=L~P(B,dv).Hardy空间H~P(S)以及Bergman空间A~P(B)如通常定义.设P与Q分别是L~2(S)到H~2与L~2到A~2(B)的直交投影.对(?)∈L~∞(S)(L~∞(B)),定义Toeplitz算子T_(?)f=P((?)f)(Q(?)f)),这里f∈H~2(S)(A~2(B)).关于Toeplitz算子的普及本质谱的研究,是算子理论中最重要的课题之一.在本文中,我们利用文献[1]中的一个逼近定理及文献[2]
|