|
科学通报 1995
C-H流形上的有界调和函数, PP. 1921-1921 Keywords: Cartan-Hadamard流形,截面曲率,调和函数 Abstract: 近年来,完备Riemann流形上调和函数的研究非常丰富.丘成桐证明了任何完备非紧Riemann流形上不存在非平凡的L~P调和函数,其中p∈(1,∞).当p=+∝时即对有界调和函数,结论依赖于流形的曲率.文献[2]中证明了非负Ricei曲率的流形上不存在有界调和函数.Greene和伍鸿熙(文献[3]Th.D)证明了若M为单连通完备非紧Riemann流形截曲率为K_M(x),满足0≥K_M(x)≥-K(p(x))其中p(x)是M上距离函数,k(·)是[0,+∞]上非负函数且
|