全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

南海北部神狐海域冷泉碳酸盐烟囱的甘油醚类生物标志化合物及其碳同位素组成

, PP. 1124-1131

Keywords: 冷泉碳酸盐烟囱,甲烷缺氧氧化,碳同位素,甘油醚类生物标志化合物

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现代冷泉体系中,甲烷缺氧氧化(AOM)是海洋沉积物中甲烷消耗的主要途径.AOM以微生物,即甲烷氧化古细菌和硫酸盐还原细菌为媒介氧化甲烷,并还原硫酸根,同时促进冷泉碳酸盐岩的形成.东沙海区冷泉碳酸盐岩中的生物标志化合物为烃类和醚类异戊二烯.与东沙海区不同的是,神狐海区同时存在甲烷缺氧氧化古细菌相关和硫酸盐还原细菌相关的两大类生物标志化合物.在样品中发现了3种AOM标志化合物含双植烷链的甘油醚(archaeol)、非类异戊二烯结构的二烷基甘油醚(DAGE1f)和单环二植基甘油二醚(单环MDGD).这些化合物具有强烈亏损的δ13C值(δ13C值在-15‰~-104‰之间),明显低于一般海相沉积物中脂类的δ13C值,充分表明其生物成因的甲烷来源.神狐海区烟囱状的冷泉碳酸盐岩同时反映了该海区曾经发生过持续的富甲烷流体的喷流活动,推测天然气水合物的分解可能是该海区烃类活动的一个重要原因.

References

[1]  1 Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability.Geology, 1998, 26: 647-650??
[2]  2 Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol, 2001,177: 129-150??
[3]  7 Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett, 1976, 28: 337-344??
[4]  8 Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398: 802-805??
[5]  12 Birgel D, Peckmann J. Aerobic methanotrophy at ancient marine methane seeps: A synthesis. Org Geochem, 2008, 39: 1659-1667??
[6]  13 Boschker H T S, Nold S C, Wellsbury P, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labellingof biomarkers. Nature, 1998, 392: 801-805??
[7]  14 Brocks J J, Pearson A. Building the biomarker tree of life. Rev Mineral Geochem, 2005, 59: 233-258??
[8]  15 Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobicoxidation of methane with sulphate. Org Geochem, 2008, 39: 1668-1677??
[9]  16 Kroopnick P M. The distribution of 13C of ∑CO2 in the world oceans. Deep-Sea Research Part A-Oceanogr Res Pap, 1985, 32: 57-84??
[10]  17 于晓果, 韩喜球, 李宏亮, 等. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成. 海洋学报, 2008, 30: 77-84
[11]  21 姚伯初. 南海天然气水合物的形成条件和分布特征. 海洋石油, 2007, 27: 1-10
[12]  22 王宏斌, 张光学, 杨木壮, 等. 南海陆坡天然气水合物成藏的构造环境. 海洋地质与第四纪地质, 2003, 23: 81-86
[13]  23 孙春岩, 牛滨华, 文鹏飞, 等. 海上E 区天然气水合物地质、地震、地球化学特征综合研究与成藏远景预测. 地球物理学报, 2004,47: 1076-1085
[14]  25 付少英. 东沙群岛海域沉积物游离烃和孔隙水特征及其地球化学意义. 南海地质研究, 2005, 1: 29-37
[15]  30 Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossilssuggest recent gas venting on the seafloor in the Northeastern South China Sea. Mar Petrol Geol, 2005, 22: 613-621??
[16]  35 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义. 现代地质, 2008, 22: 382-389
[17]  40 Elvert M, Niemann H. Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano.Org Geochem, 2008, 39: 167-177??
[18]  41 Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments.Org Geochem, 2000, 31: 1685-1701??
[19]  42 Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled anaerobic oxidation of methane. Science, 2002, 297: 1013-1015??
[20]  46 Koga Y, Morii H, Akagawa-Matsushita M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Furtheranalysis of lipid component parts. Biosci Biotechnol Biochem, 1998, 62: 230-236??
[21]  47 Boetius A, Ravenschlag K, Schubert C, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature,2000, 407: 623-626??
[22]  48 Pancost R D, Hopmans E C, Sinninghe Damste J S, et al. Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobicmethane oxidation. Geochim Cosmochim Acta, 2001, 65: 1611-1627??
[23]  49 Pancost R D, Bouloubassi I, Aloisi G, et al. Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. OrgGeochem, 2001, 32: 695-707
[24]  52 Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquidchromatography/electrospray ionization multistage mass spectrometry—New biomarkers for biogeochemistry and microbial ecology. RapidCommun Mass Sp, 2004, 18: 617-628
[25]  53 Hayes J M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar Geol, 1993, 1: 111-125
[26]  57 Wakeham S G, Lewis C M, Hopmans E C, et al. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea.Geochim Cosmochim Acta, 2003, 67: 1359-1374??
[27]  59 Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol, 1999, 159:93-109??
[28]  3 Campbell K A, Farmer J D, Marais D D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry,fluids, and palaeoenvironments. Geofluids, 2002, 2: 63-94??
[29]  4 Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps. Chem Geol, 2004, 205: 443-467??
[30]  5 丁巍伟, 王渝明, 陈汉林, 等. 台西南盆地构造特征于演化. 浙江大学学报(理学版), 2004, 31: 216-220
[31]  6 Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Mar Geol, 2008,249: 243-256??
[32]  9 Aloisi G, Pierre C, Rouchy J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possiblerelation to gas hydrate destabilization. Earth Planet Sci Lett, 2000, 184: 321-338??
[33]  10 Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water Expulsion along the Oregon/Washington margin. Geol Soc Am Bull, 1987, 98: 147-156??
[34]  11 Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examplesfrom the Florida Escarpment. Palaios, 1992, 7: 361-375??
[35]  18 De Rosa M, Gambacorta A. The lipids of archaebacteria. Prog Lipid Res, 1988, 27: 153-175??
[36]  19 Koga Y, Nishihara M, Morii H, et al. Ether polar lipids of methanogenic bacteria: Structures, comparative aspects, and biosyntheses.Microbiol Rev, 1993, 57: 164-182
[37]  20 Zhang H, Yang S, Wu N, et al. China’s first gas hydrate expedition successful. Methane Hydr Newslett: Fire Ice, 2007, Spring/Summerissue: 1
[38]  24 蒋少涌, 杨涛, 薛紫晨, 等. 南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义. 现代地质, 2005, 19: 45-54
[39]  26 Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters fromthe Shenhu area, northern South China Sea. J Oceanogr, 2008, 64: 303-310??
[40]  27 Birgel D, Elvert M, Han X Q, et al. 13C-depleted biphytanic diacids as tracers of past anaerobic oxidation of methane. Org Geochem, 2008,39: 152-156??
[41]  28 何将启, 周祖翼, 李家彪, 等. 南海北部大陆边缘构造研究: 现状及展望. 见: 高抒, 李家彪, 编. 中国边缘海的形成演化. 北京:海洋出版社, 2002. 65-74
[42]  29 陆红锋, 陈芳, 刘坚, 等. 南海北部神狐海区的自生碳酸盐岩烟囱——海底富烃流体活动的记录. 地质论评, 2006, 52: 352-357
[43]  31 陈多福, 黄永样, 冯东, 等. 南海北部冷泉碳酸盐岩和石化微生物细菌的地质意义. 矿物岩石地球化学通报, 2005, 24: 185-189
[44]  32 陆红锋, 刘坚, 陈芳, 等. 南海台西南区碳酸盐岩矿物学和稳定同位素特征——天然气水合物存在的主要证据之一. 地学前缘,2005, 12: 268-276
[45]  33 陈忠, 黄奇瑜, 颜文, 等. 南海西沙海槽的碳酸盐结壳及其对甲烷冷泉活动的指示意义. 热带海洋学报, 2007, 26: 26-33
[46]  34 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据. 科学通报, 2006, 51: 1065-1072
[47]  36 苏新, 陈芳, 陆红锋, 等. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探. 现代地质, 2008, 22: 376-381
[48]  37 陆敬安, 杨胜雄, 吴能友, 等. 南海神狐海域天然气水合物地球物理测井评价. 现代地质, 2008, 22: 447-451
[49]  38 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探. 天然气工业, 2007, 27: 1-7
[50]  39 Birgel D, Thiel V, Hinrichs K U, et al. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California.Org Geochem, 2006, 37: 1289-1302??
[51]  43 Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducingbacteria involved in anaerobic oxidation of methane. Geomicrobiol J, 2003, 20: 402-419
[52]  44 Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad SciUSA, 2004, 101: 11111-11116??
[53]  45 Teixidor P, Grimalt J O, Pueyo J J, et al. Isopranylglycerol diethers in non-alkaline evaporitic environments. Geochim Cosmochim Acta, 1993,57: 4479-4489??
[54]  50 Elvert M, Hopmans E C, Treude T, et al. Spatial variations of methanotrophic consortia at cold methane seeps: Implications from ahigh-resolution molecular and isotopic approach. Geobiology, 2005, 3: 195-209??
[55]  51 Langworthy T A, Holzer G, Zeikus J G, et al. Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacteriumcommune. Syst Appl Microbiol, 1983, 4: 1-17
[56]  54 Stadnitskaia A, Baas M, Ivanov M K, et al. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crustfrom a mud volcano in the Sorokin Trough, NE Black Sea. Archaea, 2003, 1: 165-173??
[57]  55 Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic crenarchaeota in the Arabian Sea.Appl Environ Microb, 2002, 68: 2997-3002??
[58]  56 Aloisi G, Bouloubassi S K, Heijs R D, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth PlanetSci Lett, 2002, 203: 195-203??
[59]  58 Comit P B, Gagosian R B, Pang H, et al. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic,deep-sea hydrothermal Vent archaebacterium, Methanococcus jannaschii. J Biol Chem, 1984, 259: 15234-15241
[60]  60 Peckmann J, Theil V, Michaelis W, et al. Cold seep deposits of Beauvoisin (Oxfordian; Southeastern France) and Marmorito (Miocene;northern Italy): Microbially induced authigenic carbonates. Int J Earth Sci, 1999, 88: 60-75??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133