全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

海洋微生物与噬菌体间的相互关系

, PP. 1071-1079

Keywords: 海洋噬菌体,噬菌体感染,水平基因转移,噬菌体抗性

Full-Text   Cite this paper   Add to My Lib

Abstract:

病毒是海洋中丰度最高的生物体,其中绝大多数又为能够侵染细菌和古菌的噬菌体.它们在控制微生物死亡率、调节微生物群落结构与多样性、影响微食物网过程以及参与碳、氮等元素的生物地球化学循环等方面扮演着重要的生态角色.本文对近年来关于海洋细菌与其病毒间相互关系的研究进行了概述,并结合作者的工作对未来的研究进行展望.

References

[1]  2 Duckworth D H. History and basic properties of bacterial viruses. In: Goyal S M, Gerba C P, Bitton G, eds. Phage Ecology. New York:John Wiley & Sons, 1987. 1-44
[2]  3 Fuhrman J A. Marine viruses and their biogeochemical and ecological effects. Nature, 1999, 399: 541-548??
[3]  4 Suttle C A. Marine viruses—Major players in the global ecosystem. Nat Rev Microbiol, 2007, 5: 801-812??
[4]  6 Fuhrman J A, Suttle C A. Viruses in marine planktonic systems. Oceanography, 1993, 6: 51-63
[5]  7 Steward G F, Smith D C, Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol-Prog Ser,1996, 131: 287-300??
[6]  8 Weinbauer M G, Hofle M G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophiclake. Appl Environ Microbiol, 1998, 64: 431-438
[7]  9 Suttle C A. The significance of viruses to mortality in aquatic microbial communities. Microb Ecol, 1994, 28: 237-243??
[8]  12 Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263??
[9]  13 王斐, 郑天凌, 洪华生. 海洋病毒在微生物食物环中的重要作用. 海洋科学, 1998, 4: 41-43
[10]  14 Wilhelm S W, Suttle C A. Viruses and nutrient cycles in the sea. Bioscience, 1999, 49: 781-788??
[11]  15 Wommack K E, Colwell R R. Virioplankton: Viruses in aquatic ecosystems. Microbiol Mol Biol Rev, 2000, 64: 69-114??
[12]  21 Moebus K, Nattkemper H. Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgoland Mar Res, 1981, 34:375-385
[13]  23 Hewson I, O’Neil J M, Fuhrman J A, et al. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophicationgradients in two subtropical estuaries. Limnol Oceanogr, 2001, 46: 1734-1746??
[14]  27 Jiang S C, Paul J H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. MarEcol Prog Ser, 1994, 104: 163-172??
[15]  29 Wilhelm S W, Weinbauer M G, Suttle C A, et al. The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr, 1998,43: 586-592??
[16]  30 Weinbauer M G, Brettar I, H?fle M. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic waters. LimnolOceanogr, 2003, 48: 1457-1465
[17]  31 Ripp S, Miller R V. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology, 1997,143: 2065-2070??
[18]  32 Ripp S, Miller R. Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology, 1998, 144:2225-2232??
[19]  38 Dutta C, Pan A. Horizontal gene transfer and bacterial diversity. J Bios, 2002, 27: 27-33??
[20]  39 Stotzky G. Gene transfer among bacteria in soil. In: Levy S B, Miller R V, eds. Gene Transfer in the Environment. New York: McGraw-Hill,1989. 165-222
[21]  40 Schicklmaier P, Schmieger H. Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. ApplEnviron Microbiol, 1995, 61: 1637-1640
[22]  41 Jiang S C, Paul J H. Gene transfer by transduction in the marine environment. Appl Environ Microbiol, 1998, 64: 2780-2787
[23]  42 Jain R, Rivera M C, Moore J E, et al. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol, 2003, 20:1598-1602??
[24]  43 Lawrence J G. Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol, 1999, 2: 519-523??
[25]  47 Lindell D, Sullivan M B, Johnson Z I, et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Nat Acad Sci USA,2000, 101: 11013-11018
[26]  48 Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 2005, 438: 86-89??
[27]  49 Nakayama K, Takashima K, Ishihara H, et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is relatedto lambda phage. Mol Microbiol, 2000, 38: 213-231??
[28]  51 崔玉军, 李艳君, 颜焱锋, 等. 规律成簇的间隔短回文重复: 结构、功能与应用. 微生物学报, 2008, 48: 1549-1555
[29]  54 Hill C. Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol Rev, 1993, 12: 87-108??
[30]  1 焦念志. 海洋微型生物生态学. 北京: 科学出版社, 2006. 272-303
[31]  5 Suttle C A. Viruses in the sea. Nature, 2005, 437: 356-361??
[32]  10 Weinbauer M G. Ecology of prokaryotic viruses. FEMS Microbiol Rev, 2004, 28: 127-181??
[33]  11 Danovaro R, Dell A, Corinaldesi C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 2008, 454:1084-1087??
[34]  16 Thingstad T F, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat MicrobEcol, 1997, 13: 19-27??
[35]  17 Zhang R, Weinbauer M G, Qian P Y. Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplanktonin coastal marine waters. Environ Microbiol, 2007, 9: 3008-3018??
[36]  18 Allison G E, Klaenhammer T R. Phage resistance mechanisms in lactic acid bacteria. Inter Dairy J, 1998, 8: 207-226??
[37]  19 Bohannan B J M, Kerr B, Jessup C M, et al. Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek, 2002, 81:107-115??
[38]  20 Middelboe M, Holmfeldt K, Riemann L, et al. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phageresistance and physiological properties. Environ Microbiol, 2009, 11: 1971-1982??
[39]  22 Echols H. Developmental pathways for the temperate phage: Lysis vs lysogeny. Ann Rev Genet, 1976, 6: 157-190
[40]  24 Lenski R E. Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol, 1988, 10: 1-44
[41]  25 Weinbauer M G, Suttle C A. Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol, 1999, 18:217-225??
[42]  26 Jiang S C, Paul J H. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol ProgSer, 1996, 142: 27-38??
[43]  28 Jiang S C, Paul J H. Significance of lysogeny in the marine environments: Studies with isolates and a model of lysogenic phage production.Microb Ecol, 1998, 35: 235-243??
[44]  33 Moebus K. Marine bacteriophage reproduction under nutrient-limited growth of host bacteria. 2. Investigations with phage-hosttem [H3:H3/. Mar Ecol Prog Ser, 1996, 144: 13-22
[45]  34 Abedon S T. Selection for bacteriophage latent period length by bacterial density: A theoretical examination. Microb Ecol, 1989, 18: 79-88??
[46]  35 Abedon S T, Herschler T D, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol,2001, 67: 4233-4241??
[47]  36 Rohwer F, Prangishvili D, Lindell D. Roles of viruses in the environment. Environ Microbiol, 2009, 11: 2771-2774??
[48]  37 Davison J. Genetic exchange between bacteria in the environment. Plasmid, 1999, 42: 73-91??
[49]  44 Gogarten J P, Townsend J P. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol, 2005, 3: 679-687??
[50]  45 Rohwer F, Thurber R V. Viruses manipulate the marine environment. Nature, 2009, 459: 207-212
[51]  46 Lindell D, Jaffe J D, Coleman M L, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution.Nature, 2007, 449: 83-86??
[52]  50 Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315:1709-1712??
[53]  52 Chibani-Chennoufi S, Bruttin A, Dillmann M L, et al. Phage-host interaction: An ecological perspective. Bacteriol, 2004, 186: 3677-3686??
[54]  53 Huang C X, Zhang Y Y, Jiao N Z. Phage Resistance of a Marine Bacterium, Roseobacter denitrificans OCh114, as Revealed by ComparativeProteomics. Curr Microbiol, 2010, 61: 141-147
[55]  55 Forde A, Fitzgerald G F. Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76: 89-113??
[56]  56 Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra-chromosomalorigin. Microbiology, 2005, 151: 2551-2561??
[57]  57 Mojica F J M, Díez-Villase?or C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreigngenetic elements. J Mol Evol, 2005, 60: 174-182??
[58]  58 Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies. Microbiology, 2005, 151: 653-663??
[59]  59 Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol, 2008,190: 1390-1400??
[60]  60 Zhang Y Y, Jiao N Z, Colquhoun D R, et al. Protein modifications related to phage resistance in a marine roseobacter. Aquat Microb Ecol,2009, 55: 203-207??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133