全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

半胱氨酸化学键合金纳米颗粒用于氧化性小分子可视化测定的载体研究

DOI: 10.1360/972010-1514, PP. 1196-1203

Keywords: 半胱氨酸,金纳米颗粒,H2O2,1O2

Full-Text   Cite this paper   Add to My Lib

Abstract:

金纳米颗粒(AuNPs)具有独特的等离子体共振吸收性质.半胱氨酸与金纳米颗粒之间的Au–S共价键作用导致金纳米颗粒等离子体共振吸收红移,本文据此建立了一种通用性的氧化性小分子的可视化分析方法.当氧化性小分子如H2O2或者单线态氧(1O2)存在时,半胱氨酸的巯基被氧化成–S–S–键,使半胱氨酸诱导金纳米颗粒聚集的能力降低,从而金纳米颗粒的等离子体共振吸收峰由740nm蓝移到531nm,溶液颜色逐渐由蓝变红,据此实现了氧化性小分子的可视化检测.研究发现,740和531nm处的吸收度比值(A740/A531)与H2O2或者1O2的浓度呈现良好的线性关系.将所建立的方法用于老鼠脑浆中H2O2的检测,检测结果与流动注射-化学发光法一致.

References

[1]  2 Sang Y, Zhang L, Li Y F, et al. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. AnalChim Acta, 2010, 659: 224-228
[2]  6 陈霄燕, 李津如, 李兴长, 等. 纳米金颗粒对葡萄糖氧化酶活力增强效应的初步探讨. 科学通报, 1998, 43: 2567-2568
[3]  7 Wang L, Wei Q, Wu C, et al. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor.Chinese Sci Bull, 2008, 53: 1175-1184??
[4]  8 Kreibig U, Genzel L. Optical absorption of small metallic particles. Surface Sci, 1985, 156: 678-700??
[5]  14 Quesada A R, Byrnes R W, Krezoski S O, et al. Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: Zinc-metallothionein andother sites Arch. Biochem Biophys, 1996, 334: 241-250??
[6]  15 Drábková M, Matthijs H C P, Admiraal W, et al. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 2007, 45:363-369??
[7]  16 Rana S, Tamagake K. A chemiluminescence method for the detection of electrochemically generated H2O2 and ferryl porphyrin.Bioelectrochemistry, 2006, 68: 31-39??
[8]  18 Yamamoto K, Ohgaru T, Torimura M, et al. Highly-sensitive flow injection determination of hydrogen peroxide with aperoxidase-immobilized electrode and its application to clinical chemistry. Anal Chim Acta, 2000, 406: 201-207??
[9]  19 Yue H, Bu X, Huang M H, et al. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceuticalproduct using high performance liquid chromatography with coulometric detection. Int J Pharm, 2009, 375: 33-40??
[10]  21 Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am ChemSoc, 2004, 126: 8648-8649??
[11]  25 Yang W, Gooding J J, He Z, et al. Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J NanosciNanotechnol, 2007, 7: 712-716
[12]  26 Lin J H, Chang C W, Tseng W L. Fluorescent sensing of homocysteine in urine: Using fluorosurfactant-capped gold nanoparticles ando-Phthaldialdehyde. Analyst, 2010, 135: 104-110??
[13]  27 Oseroff A R, Ohuoha D, Hasan T, et al. Antibody-targeted photolysis: Selective photodestruction of human T-cell leukemia cells usingmonoclonal antibody-chlorine6 conjugates. Proc Natl Acad Sci USA, 1986, 83: 8744-8748??
[14]  1 Liu Z D, Li Y F, Huang C Z, et al. A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNAcomplex induced aggregation of gold nanoparticles. Environ Sci Technol, 2009, 43: 5022-5027??
[15]  3 Song S, Liang Z, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem IntEd, 2009, 48: 8670-8674??
[16]  4 Shen X W, Huang C Z, Li Y F. Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetessufferers based on the redox reaction of chlorauric acid. Talanta, 2007, 72: 1432-1437??
[17]  5 Jiang T, Liu R, Huang X, et al. Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of goldnanoparticles. Chem Commun, 2009, 1972-1974
[18]  9 Wang J, Li Y F, Huang C Z, et al. Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammoniumbromide capped gold nanoparticles. Anal Chim Acta, 2008, 626: 37-43??
[19]  10 Li Z P, Duan X R, Liu C H, et al. Selective determination of cysteine by resonance light scattering technique based on self-assembly ofgold nanoparticles. Anal Biochem, 2006, 351: 18-25??
[20]  11 Mocanu A, Cernica I, Tomoaia G, et al. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloid Surface A,2009, 338: 93-101??
[21]  12 李正平, 段新瑞, 白玉惠. 基于金纳米粒子自组装的分光光度法测定半胱氨酸. 分析化学, 2006, 34: 1149-1151
[22]  13 Shiang Y C, Huang C C, Chang H T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. ChemCommun, 2009, 3437-3439
[23]  17 Vianello F, Zennaro L, Rigo A. A colorimetric biosensor to determine hydrogen peroxide using a monomolecular layer of horseradishperoxidase immobilized on a glass surface. Biosens Bioelectron, 2007, 22: 2694-2699??
[24]  20 Cardey B, Enescu M. Selenocysteine versus cysteine reactivity: A theoretical study of their oxidation by hydrogen peroxide. J Phys ChemA, 2007, 111: 673-678
[25]  22 邓峰, 刘昭荣, 吴小红, 等. 高效液相色谱检测低氧时大鼠脑组织中腺苷酸含量. 解放军预防医学杂志, 1996, 14: 185-188
[26]  23 Zhou X H, Kong D M, Shen H X. Ag+ and cysteine quantitation based on G-quadruplex-hemin DNAzymes disruption by Ag+. Anal Chem,2010, 82: 789-793??
[27]  24 Liu Y, Li Y, Yan X P. Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as aselective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater, 2008, 181: 1536-1543
[28]  28 Zhu Z, Tang Z, Phillips J A, et al. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc, 2008,130: 10856-10857??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133