全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

嫦娥一号干涉成像光谱仪数据TiO2反演初步结果

, PP. 1257-1263

Keywords: 嫦娥一号,干涉成像光谱仪,TiO2,反演,Clementine,UVVIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

反演月表TiO2含量的分布对于月球科学研究和未来月球资源开采与利用具有重要意义.利用干涉成像光谱仪数据对月表TiO2反演进行了初步尝试,获得了基于月球着陆点数据和月面真值的TiO2反演公式.将该公式应用于嫦娥一号干涉成像光谱仪数据,获得了TiO2在Apollo16登陆点附近高地、月球澄海MS2地区的低钛玄武岩和高钛玄武岩等地区的局域分布特征.经与ClementineUVVIS数据反演结果进行比较,嫦娥一号干涉成像光谱仪数据的TiO2含量初步模型对于所研究的高地地区预测偏高0.7wt.%左右,对于月海低钛地区的预测偏高1.5wt.%左右,对于月海高钛地区的含量预测偏低0.8wt.%左右.

References

[1]  1 Ouyang Z Y, Li C L, Zou Y L, et al. Chang’E-1 lunar mission: An overview and primary science results. Chinese J Space Sci, 2010, 30:392-403
[2]  2 平劲松. 嫦娥一号获得的月球综合科学成果. 中国科学: 物理学 力学 天文学, 2010, 40: 1315
[3]  6 法文哲, 金亚秋. “嫦娥一号”多通道微波辐射计测量估算全月球月壤层氦3 含量. 科学通报, 2010, 55: 3097-3101
[4]  8 Zheng Y C, Ouyang Z Y, Li C L, et al. China’s lunar exploration program: Present and future. Planet Space Sci, 2008, 56: 881-886??
[5]  11 凌宗成, 张江, 刘建忠, 等. “嫦娥一号”干涉成像光谱仪数据FeO 反演初步结果. 科学通报, 2010, 55: 3373-3377
[6]  12 McCord T B, Adams J B. Progress in optical analysis of lunar surface composition. Moon, 1973, 7: 453-474??
[7]  15 Pieters C M, Boardman J, Buratti B, et al. The Moon mineralogy mapper (M-3) on Chandrayaan-1. Curr Sci, 2009, 96: 500-505
[8]  16 Burns R. Mineralogical Applications of Crystal Field Theory. Cambridge, UK: Cambridge University Press, 1993
[9]  17 Lucey P, Korotev R L, Gillis J J, et al. Understanding the lunar surface and space-moon interactions. Rev Miner Geochem, 2006, 60:83-219??
[10]  18 Heiken G, Vaniman D T, French B M. Lunar Sourcebook: A User’s Guide to the Moon. Cambridge, UK: Lunar and Planetary Institute andCambridge University Press, 1991
[11]  30 Jolliff B L. Clementine UVVIS multispectral data and the Apollo 17 landing site: What can we tell and how well? J Geophys Res, 1999,104: 14123-14148
[12]  31 Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on final processing of Clementineultraviolet-visible images. J Geophys Res, 2000, 105: 20297-20305??
[13]  32 Gillis J J, Jolliff B L. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotelysensed TiO2 concentrations. J Geophys Res, 2003, 108: 5009
[14]  34 Adams J B, McCord T B. Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples. In:Proceedings of 2nd Lunar Planet Science Conference, 1971, 2183-2195
[15]  3 李春来, 刘建军, 任鑫, 等. 嫦娥一号图像数据处理与全月球影像制图. 中国科学: 地球科学, 2010, 40: 294-306
[16]  4 李春来, 任鑫, 刘建军, 等. 嫦娥一号激光测距数据及全月球DEM 模型. 中国科学: 地球科学, 2010, 40: 281-293
[17]  5 平劲松, 黄倩, 鄢建国, 等. 基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01. 中国科学G 辑: 物理学 力学 天文学,2008, 38: 1601-1612
[18]  7 孟治国, 陈圣波, Edward M O, 等. 基于嫦娥一号卫星微波辐射计数据的月球Cabeus 撞击坑水冰含量研究. 中国科学: 物理学 力学 天文学, 2010, 40: 1363-1369
[19]  9 Ouyang Z Y, Jiang J S, Li C L, et al. Preliminary scientific results of Chang’E-1 lunar orbiter: Based on payloads detection data in thefirst phase. Chin J Space Sci 2008, 28: 361-369
[20]  10 Sun H X, Wu J, Dai S W, et al. Introduction to the payloads and the initial observation results of Chang’E-1. Chin J Space Sci, 2008, 28:374-384
[21]  13 Nozette S, Rustan P, Pleasance L P, et al. The Clementine mission to the Moon—Scientific overview. Science, 1994, 266: 1835-1839??
[22]  14 Matsunaga T, Ohtake M, Haruyama J, et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler.Geophys Res Lett, 2008, 35: L23201??
[23]  19 吴昀昭, 郑永春, 邹永廖, 等. 嫦娥一号IIM 数据处理分析与应用之一: 全月表矿物吸收中心分布图. 中国科学: 物理学 力学 天文学, 2010, 40: 1343-1362
[24]  20 刘福江, 乔乐, 刘征, 等. 基于嫦娥一号干涉成像光谱仪吸收特征的月表钛含量评估. 中国科学: 物理学 力学 天文学, 2010, 40:1316-1325
[25]  21 McCord T B. Color differences on lunar surface. J Geophys Res, 1969, 74: 3131-3142??
[26]  22 Whitaker E. Lunar color boundaries and their relationship to topographic features: A preliminary survey. Earth Moon Planets, 1972, 4:348-355
[27]  23 Charette M P, Mccord T B, Pieters C M, et al. Application of remote spectral reflectance measurements to lunar geology classification anddetermination of titanium content of lunar soils. J Geophys Res, 1974, 79: 1605-1613??
[28]  24 Johnson J R, Larson S M, Mosher J A. A TiO2 abundance map for the northern maria. In: Proceedings of 8th Lunar Science Conference,1977. 1029-1036
[29]  25 Johnson J R, Larson S M, Singer R B. Remote sensing of potential lunar resources. 1 Near side compositional properties. J Geophys Res,1991, 96: 18861-18882
[30]  26 Pieters C M. Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. In: Proceedings of 9th Lunar PlanetScience Conference, 1978, 2825-2849
[31]  27 Melendrez D E, Johnson J R, Larson S M, et al. Remote sensing of potential lunar resources. 2 High spatial resolution mapping of spectralreflectance ratios and implications for near side mare TiO2 content. J Geophys Res, 1994, 99: 5601-5619
[32]  28 Blewett D T, Lucey P G, Hawke B R, et al. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mappingtechniques. J Geophys Res, 1997, 102: 16319-16325??
[33]  29 Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2 content of the lunar surface multispectral imagery. J Geophys Res, 1998,103: 3679-3699??
[34]  33 Gillis J J, Lucey P G, Hawke B R. Testing the relation between UV-vis color and TiO2 content of the lunar maria. Geochim CosmochimActa, 2006, 70: 6079-6102??
[35]  35 Ling Z C, Wang A, Jolliff B L. Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus, 2011, 211: 101-113??
[36]  36 Pieters C M, Head J W, Isaacson P, et al. Lunar international science coordination/calibration targets (L-ISCT). Adv Space Res, 2008, 42:248-258??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133