2 Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions. Theor Comp Fluid Dyn, 1992, 3: 285-306??
[3]
4 Johnson A A, Tezduyar T E. 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Method ApplM, 1997, 145: 301-321??
[4]
5 Glowinski R, Pan T W, Hesla T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flowpast moving rigid bodies: application to particulate flow. J Comput Phys, 2001, 169: 363-426??
[5]
12 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J FluidMech, 1994, 271: 311-339
[6]
13 Aidun C K, Lu Y, Ding E. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech,1998, 373: 287-311??
[7]
17 Noble D R, Torczynski J R. A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C, 1998, 9: 1189-1201??
[8]
18 Feng Y T, Han K, Owen D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluidflows: Computational issues. Int J Numer Meth Eng, 2007, 72: 1111-1134??
[9]
19 Cook B K, Noble D R, Williams J R. A direct simulation method for particle-fluid systems. Eng Computation, 2004, 21: 151-168??
[10]
20 Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29: 47-65??
[11]
21 Sagaut P. Large Eddy Simulation for Incompressible Flows: An Introduction. Berlin: Springer Verlag, 2006
[12]
23 Van der Hoef M A, van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: A multiscale modelingstrategy. Annu Rev Fluid Mech, 2008, 40: 47-70??
[13]
24 Hopkins M A, Louge M Y. Inelastic microstructure in rapid granular flows of smooth disks. Phys Fluids A: Fluid Dynamics, 1991, 3: 47??
[14]
25 Ge W, Li J. Pseudo-particle approach to hydrodynamics of particle-fluid systems. In: Kwauk M, Li J, eds. Proceedings of the 5thInternational Conference on Circulating Fluidized Bed. Beijing: Science Press, 1996. 260-265
[15]
26 Ouyang J, Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chem Eng Sci, 1999, 54: 2077-2083??
[16]
27 Ouyang J, Li J. Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization. Chem Eng Sci, 1999, 54:5427-5440??
[17]
28 Wang L, Zhou G, Wang X, et al. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model andlattice Boltzmann method. Particuology, 2010, 8: 379-382??
[18]
30 Qian Y H, Orszag S. Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes. Europhy Lett,1993, 21: 255-259??
[19]
37 Dance S L, Climent E, Maxey M R. Collision barrier effects on the bulk flow in a random suspension. Phys Fluid, 2004, 16: 828-831??
[20]
3 Johnson A A, Tezduyar T E. Simulation of multiple spheres falling in a liquid-filled tube. Comput Method Appl M, 1996, 134: 351-373??
[21]
6 Pan T W, Joseph D D, Bai R, et al. Fluidization of 1204 spheres: Simulation and experiment. J Fluid Mech, 2002, 451: 169-191
[22]
7 Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007,62: 3378-3396??
[23]
8 Ma J, Ge W, Wang X, et al. High-resolution simulation of gas-solid suspension using macro-scale particle methods. Chem Eng Sci, 2006,61: 7096-7106??
[24]
9 Ma J, Ge W, Xiong Q, et al. Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method. ChemEng Sci, 2009, 64: 43-51
[25]
10 Xiong Q, Li B, Chen F, et al. Direct numerical simulation of sub-grid structures in gas-solid flow-GPU implementation of macro-scalepseudo-particle modeling. Chem Eng Sci, 2010, 65: 5356-5365??
[26]
11 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J FluidMech, 1994, 271: 285-309
[27]
14 Qi D. Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech, 1999, 385: 41-62??
[28]
15 Feng Z G, Michaelides E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J ComputPhys, 2004, 195: 602-628
[29]
16 Peskin C S. Numerical analysis of blood flow in the heart. J Comput Phys, 1977, 25: 220-252??
[30]
22 Marín M. Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism. Comput Phys Commun, 1997, 102: 81-96??
[31]
29 Chen S, Doolen G D. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30: 329-364??
[32]
31 Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett, 1986, 56: 1505-1508??
[33]
32 Chorin A J. A numerical method for solving incompressible viscous flow problems. J Comput Phys, 1967, 2: 12-26??
[34]
33 Cook B K. A numerical framework for the direct simulation of solid-fluid systems. Doctor Disseration. Cambridge: MassachusettsInstitute of Technology, 2001
[35]
34 Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles. J Fluid Mech, 2006, 177:467-483
[36]
35 Patankar N A, Singh P, Joseph D D, et al. A new formulation of the distributed Lagrange multiplier/fictitious domain method forparticulate flows. Int J Multiphas Flow, 2000, 26: 1509-1524??
[37]
36 Wang L P, Rosa B, Gao H, et al. Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Int JMultiphase Flow, 2009, 35: 854-867??