全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

基于时驱硬球算法与格子玻尔兹曼方法的颗粒流体系统直接数值模拟

DOI: 10.1360/972010-1687, PP. 1246-1256

Keywords: 时驱硬球算法,格子玻尔兹曼方法,浸入运动边界法,颗粒流体系统,直接数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

实现了一种直接数值模拟颗粒流体系统的耦合算法,颗粒间相互作用由时驱硬球算法描述,而流体的控制方程采用格子玻尔兹曼方法求解,流固耦合用浸入运动边界法实现.该方法使用欧拉网格求解流场,拉格朗日网格跟踪颗粒,避免了非结构化贴体网格方法需要重新划分网格的问题.通过模拟两个圆形颗粒在黏性流体中的沉降过程,成功地复现了经典的Drafting-Kissing-Tumbling(DKT)过程,验证了耦合算法的有效性.

References

[1]  1 李静海, 欧阳洁, 高士秋, 等. 颗粒流体复杂系统的多尺度模拟. 北京: 科学出版社, 2005
[2]  2 Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions. Theor Comp Fluid Dyn, 1992, 3: 285-306??
[3]  4 Johnson A A, Tezduyar T E. 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput Method ApplM, 1997, 145: 301-321??
[4]  5 Glowinski R, Pan T W, Hesla T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flowpast moving rigid bodies: application to particulate flow. J Comput Phys, 2001, 169: 363-426??
[5]  12 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J FluidMech, 1994, 271: 311-339
[6]  13 Aidun C K, Lu Y, Ding E. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech,1998, 373: 287-311??
[7]  17 Noble D R, Torczynski J R. A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C, 1998, 9: 1189-1201??
[8]  18 Feng Y T, Han K, Owen D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluidflows: Computational issues. Int J Numer Meth Eng, 2007, 72: 1111-1134??
[9]  19 Cook B K, Noble D R, Williams J R. A direct simulation method for particle-fluid systems. Eng Computation, 2004, 21: 151-168??
[10]  20 Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29: 47-65??
[11]  21 Sagaut P. Large Eddy Simulation for Incompressible Flows: An Introduction. Berlin: Springer Verlag, 2006
[12]  23 Van der Hoef M A, van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: A multiscale modelingstrategy. Annu Rev Fluid Mech, 2008, 40: 47-70??
[13]  24 Hopkins M A, Louge M Y. Inelastic microstructure in rapid granular flows of smooth disks. Phys Fluids A: Fluid Dynamics, 1991, 3: 47??
[14]  25 Ge W, Li J. Pseudo-particle approach to hydrodynamics of particle-fluid systems. In: Kwauk M, Li J, eds. Proceedings of the 5thInternational Conference on Circulating Fluidized Bed. Beijing: Science Press, 1996. 260-265
[15]  26 Ouyang J, Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chem Eng Sci, 1999, 54: 2077-2083??
[16]  27 Ouyang J, Li J. Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization. Chem Eng Sci, 1999, 54:5427-5440??
[17]  28 Wang L, Zhou G, Wang X, et al. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model andlattice Boltzmann method. Particuology, 2010, 8: 379-382??
[18]  30 Qian Y H, Orszag S. Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes. Europhy Lett,1993, 21: 255-259??
[19]  37 Dance S L, Climent E, Maxey M R. Collision barrier effects on the bulk flow in a random suspension. Phys Fluid, 2004, 16: 828-831??
[20]  3 Johnson A A, Tezduyar T E. Simulation of multiple spheres falling in a liquid-filled tube. Comput Method Appl M, 1996, 134: 351-373??
[21]  6 Pan T W, Joseph D D, Bai R, et al. Fluidization of 1204 spheres: Simulation and experiment. J Fluid Mech, 2002, 451: 169-191
[22]  7 Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007,62: 3378-3396??
[23]  8 Ma J, Ge W, Wang X, et al. High-resolution simulation of gas-solid suspension using macro-scale particle methods. Chem Eng Sci, 2006,61: 7096-7106??
[24]  9 Ma J, Ge W, Xiong Q, et al. Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method. ChemEng Sci, 2009, 64: 43-51
[25]  10 Xiong Q, Li B, Chen F, et al. Direct numerical simulation of sub-grid structures in gas-solid flow-GPU implementation of macro-scalepseudo-particle modeling. Chem Eng Sci, 2010, 65: 5356-5365??
[26]  11 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J FluidMech, 1994, 271: 285-309
[27]  14 Qi D. Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech, 1999, 385: 41-62??
[28]  15 Feng Z G, Michaelides E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J ComputPhys, 2004, 195: 602-628
[29]  16 Peskin C S. Numerical analysis of blood flow in the heart. J Comput Phys, 1977, 25: 220-252??
[30]  22 Marín M. Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism. Comput Phys Commun, 1997, 102: 81-96??
[31]  29 Chen S, Doolen G D. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30: 329-364??
[32]  31 Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett, 1986, 56: 1505-1508??
[33]  32 Chorin A J. A numerical method for solving incompressible viscous flow problems. J Comput Phys, 1967, 2: 12-26??
[34]  33 Cook B K. A numerical framework for the direct simulation of solid-fluid systems. Doctor Disseration. Cambridge: MassachusettsInstitute of Technology, 2001
[35]  34 Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles. J Fluid Mech, 2006, 177:467-483
[36]  35 Patankar N A, Singh P, Joseph D D, et al. A new formulation of the distributed Lagrange multiplier/fictitious domain method forparticulate flows. Int J Multiphas Flow, 2000, 26: 1509-1524??
[37]  36 Wang L P, Rosa B, Gao H, et al. Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond. Int JMultiphase Flow, 2009, 35: 854-867??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133