全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

白蛋白锌卟啉结合体光解水产氢性能

DOI: 10.1360/972010-1508, PP. 1360-1366

Keywords: 生物高分子,光敏剂,金属卟啉,白蛋白,电子转移反应,产氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

将难溶性的锌卟啉(ZnTpHPP)与牛血清白蛋白(BSA)结合,制得一类新型水溶性生物高分子金属卟啉配合物(BSA-ZnTpHPP).通过紫外可见光谱(UV-Vis)、圆二色谱(CD)及非变性聚丙烯酰胺凝胶电泳(Native-PAGE)对BSA-ZnTpHPP的结构进行了表征,发现二者以配位键结合,BSA与锌卟啉以较低比例结合时蛋白质二级结构保持.考察了BSA-ZnTpHPP的光敏感性,发现BSA-ZnTpHPP在光照条件下易变成三重激发态,可以将电子转移给甲基紫精(MV2+).以三乙醇胺(TEOA)为电子供体,甲基紫精(MV2+)为电子中继体,以BSA-ZnTpHPP/MV2+/TEOA/胶体Pt四组分体系考察了BSA-ZnTpHPP的光诱导水解产氢性能,结果表明,这类水溶性生物高分子金属卟啉光敏剂具有良好的光解水产氢性能.

References

[1]  5 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253-258??
[2]  6 Milczarek G, Kasuya A, Mamykin S, et al. Optimization of a two-compartment photoelectroehemical cell for solar hydrogen production. Int J Hydrogen Energ, 2003, 28: 919-926??
[3]  7 Li Y X, Guo M M, Peng S Q. Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3+ coupling for efficient visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy, 2009, 34: 5629-5636??
[4]  8 Liu Y, Xie L, Li Y, et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J Power Sources, 2008, 183: 701-707??
[5]  9 黄柏标, 王朋, 张晓阳, 等. 可见光光催化研究新进展. 科学通报, 2009, 54: 847
[6]  16 Laura L B, Eric S B, John W P, et al. Engineering algae for biohydrogen and biofuel production. Curr Opin Biotech, 2009, 20: 264-271??
[7]  17 Yoshinobu S, Yutaka A. Bio-mimetic hydrogen production from polysaccharide using the visible light sensitization of zinc porphyrin. Biotechnol Bioeng, 2003, 82: 710-714??
[8]  18 Ogoshi H, Mizutani T, Hayashi T, et al. Porphyrins and metalloporphyrins as receptors models in molecular recognition. In: Ogoshi H, Mizutani T, Hayashi T, et al. eds. The Porphyrin Handbook. Vol 6 Chapter 46, Applications: Past, Present and Future. San Diego, USA: Academic Press, 2000. 279
[9]  19 Yutaka A, Yumiko T, Ichiro O. Highly efficient photochemical hydrogen production system using zinc porphyrin and hydrogenase in CTAB micellar system. So Energ Mat Sol C, 2003, 79: 103-111??
[10]  20 Myles A J, Branda N R. Controlling photoinduced electron transfer within a hydrogen-bonded porphyrin phenoxynaphthacene-quinone photochromic system. J Am Chem Soc, 2001, 123, 177-178??
[11]  22 Ghuman J, Zunszain P A, Petitpas I, et al. Structural basis of the drug-binding specificity of human serum albumin. J Mol Bio, 2005, 353: 38-52??
[12]  23 Wang R M, Song J F, He Y F, et al. Conjugation of chitooligosaccharide-5-fluorouracil with bovine serum albumin. Chin Chem Lett, 2006, 17: 1495-1498
[13]  24 王荣民, 朱永峰, 何玉凤, 等. 金属卟啉蛋白质结合体的结构与功能. 化学进展, 2010, 22: 1952-1963
[14]  25 童沈阳, 赵凤林, 孙国斌. Meso-四(对羟基苯)卟啉的合成及其酸碱平衡的研究. 分析化学, 1987, 15: 1067-1070
[15]  30 Fukuzumi S. Electron transfer chemistry of porphyrins and metalloporphyrins. In: Kadish K M, Smith K M, Guilard R, eds. The Porphyrin Handbook .Vol 8. Electron Transfer, Chapter 56. New York: Academic Press, 2000. 115
[16]  1 Navarro R M, Pena M A, Fierro J L G. Hydrogen production reactions from carbon feedstocks:fossil fuels and biomass. Chem Rev, 2007, 107: 3952-3991??
[17]  2 Lubitz W, Tumas W. Hydrogen: An overview. Chem Rev, 2007, 107: 3900-3903??
[18]  3 Haryanto A, Fernando S, Murali N, et al. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels, 2005, 19: 2098-2106??
[19]  4 Navarro R M, Sánchez-Sánchez M C, Alvarez-Galvan M C, et al. Hydrogen production from renewable sources: Biomass and photocatalytic opportunities. Energy Environ Sci, 2009, 2: 35-54??
[20]  10 Zhang X H, Jing D W, Guo L J. Effects of anions on the photocatalytic H2 production performance of hydrothermally synthesized Ni-doped Cd0.1Zn0.9S photocatalysts. Int J Hydrogen Energy, 2010, 35: 7051-7057
[21]  11 Yan J H, Yang H H, Tang Y G, et al. Synthesis and photocatalytic activity of CuYyFe2-yO4-CuCo2O4 nanocomposites for H2 evolution under visible light irradiation. Renewable Energy, 2009, 34: 2399-2403??
[22]  12 Huang B S, Chang F Y, Wey M Y. Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution. Int J Hydrogen Energy, 2010, 35: 7699-7705??
[23]  13 An W, Jiao Y, Dong C, et al. Spectroscopic and molecular modeling of the binding of meso-tetrakis(4-hydroxyphenyl) porphyrin to human serum albumin. Dyes Pigments, 2009, 81: 1-9??
[24]  14 Erkoc A, Erkoc F. Structural and electronic properties of porphyrin skeleton of chlorophyll. J Mol Struct(Theochem), 2002, 579: 41-44??
[25]  15 Mathews J, Wang G Y. Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energy, 2009, 74: 7404-7416
[26]  21 Theodore P. All about Albumin. Biochemistry, Genetics, and Medical Applications. New York: Academic Press, 1996
[27]  26 Komatsu T, Wang R M, Zunszain P A, et al. Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc-protoporphyrin IX. J Am Chem Soc, 2006, 128: 16297-16301??
[28]  27 Berova N, Nakanishi K, Woody R W. Circular Dichroism: Principles and Applications. 2nd ed. New York: John Wiley & Sons, 2004
[29]  28 Whitmore L, Wallace B A. Protein secondary structure analyses from CD Spectroscopy, Inc. Biopolymers, 2008, 89: 392-400??
[30]  29 Kelly S M, Price N C. The application of circular dichroism to studies of protein folding and unfolding. Biochem Biophys Acta, 1997, 1338: 161-185??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133