全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

转烟酰胺合酶基因甘蓝型油菜盐碱胁迫下叶片蛋白质差异的研究

, PP. 1440-1447

Keywords: 甘蓝型油菜,烟酰胺合酶基因,盐胁迫,差异蛋白质

Full-Text   Cite this paper   Add to My Lib

Abstract:

盐胁迫是危害农作物的主要非生物胁迫之一.为了能从蛋白质水平揭示盐胁迫下油菜耐盐的分子遗传机制,采用IEF/SDS-PAGE双向凝胶电泳技术对转OsNAS1基因的甘蓝型油菜在碱性盐胁迫下(20mmol/LNa2CO3)的幼叶蛋白进行了分离.通过银染显色,获得了分辨率和重复性较好的双向电泳图谱,PDQuest软件在分子量20~75kD,等电点4~7范围内,发现表达量变化2倍以上的点有12个.对这12个蛋白质点采用MALDI-TOF-MS进行肽质谱指纹图分析,有11个蛋白点得到了可靠的鉴定,其中有5个差异蛋白可能与耐盐性有关,分别是二氢硫辛酸脱氢酶、谷胱甘肽-S-转移酶、过氧化物酶、20S蛋白酶体?亚基以及核酮糖-1,5-二磷酸羧化酶/氧化酶,它们参与了物质能量代谢、蛋白质降解以及细胞防卫等过程,推测转OsNAS1基因的甘蓝型油菜的耐盐性可能与这些生理生化代谢有关.研究结果为揭示转基因油菜耐盐机理提供了理论依据.

References

[1]  Herik A, Koch G, Mock H P, et al. Isolation, characterization and cDNA cloning of nicotianamine synthase from barley, a key enzyme for iron homeostasis in plants. Euro J Biochem, 1999, 265: 231–239
[2]  Ling H Q, Koch G, Baumlein H. Map based cloning of chleronerva a gene involved in iron uptake of higher plants encoding nicotianamine synthases. Proc Natl Acad Sci USA, 1999, 96: 7098–7103
[3]  Higuchi K, Tani K, Nakanishi H, et al. The expression of a barley HvNASl nicotianamine synthase gene promotor-gus fusion gene in transgenic tobacco is induced by Fe-deficiency in root. Biosci Biotech Biochem, 2001, 65: 1696–1697
[4]  石永丽, 贾媛, 戴绍军. 作物盐胁迫响应蛋白质组学研究. 哈尔滨师范大学自然科学学报, 2009, 25: 101–104
[5]  Murray M G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucleic Acids Res, 1980, 8: 4321–4325
[6]  Wang Y P, Sonntag K, Rudloff E, et al. Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breed, 2005, 124: 1–4
[7]  汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999
[8]  Kong F, Ge C L, Fang X P, et al. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genom, 2010, 37: 333–340
[9]  Becker R, Fritz E, Manteuffel R. Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol, 1995, 108: 269–275
[10]  Pich A, Manteuffel R, Hillmer S, et al. Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration[J].Planta.2001, 213:967-
[11]  董晓丽, 周集体, 杜翠红, 等. Rubisco 的分子生物学研究. 高技术通讯, 2001, 12: 95–97
[12]  Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 2003, 3: 527–535
[13]  乐寅婷, 李梅, 陈倩, 等. 油菜叶片蛋白质组对机械损伤应答的初步分析. 植物生态学报, 2008, 32: 220–225
[14]  Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 55–60
[15]  Goldgerg A L. Protein degradation and protection against misfolded or damaged proteins. Nature, 2003, 426: 895–899
[16]  Yan S P, Tang Z C, Su W A, et al. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235–244
[17]  Roxas V P. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988–991
[18]  游向荣. 龙眼成花转变与成花逆转的差异蛋白质组学研究. 博士学位论文. 福州: 福建农林大学, 2009
[19]  Paul D. The ATP synthase——A splendid molecular machine. Annu Rev Biochem, 2003, 66: 717–749
[20]  张欣欣, 柳参奎. 水稻线粒体ATP 合成酶小亚基基因的鉴定及解析. 分子植物育种, 2003, 1: 605–612
[21]  Hu Y, Fricke W, Schmidhalter U. Salinity and the growth of non-halophytic grass leaves: The role of mineral nutrient distribution. Funct Plant Biol, 2005, 32: 973–985
[22]  Lu K P, Liou Y C, Zhou X Z. Pinning down the proline-directed phosphorylation signaling. Trends Cell Bio1, 2002, 12: 164–172
[23]  王汉中. 我国油菜产业发展的回顾与展望. 中国油料作物学报, 2010, 32: 300–302
[24]  李永智, 单风翔. 土壤盐渍化危害及治理途径浅析. 西部探矿工程, 2008, 8: 85–88
[25]  郝东风, 兰海燕, 陈邦党, 等. 新疆盐生植物耐盐基因NHX 转化甘蓝型油菜及其耐盐性的初步研究. 生物技术通报, 2006, 3: 81–84
[26]  Wiren N V, Klair S, Bansal S, et al. Nicotianamine chelates both Fe III and Fe II. Implications for metal transport in plant. Plant Physiol, 1999, 119: 1107–1114
[27]  Suzuki K, Higuchi K, Nakanishi H, et al. Cloning of nicotianamine synthase in response to Fe nutrition status in Gramineae. Plant Soil, 1996, 178: 171–177
[28]  Gupta A S, Webb R P, Holaday A S, et al. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol, 2002, 103: 1067–1073
[29]  Lagrimini L M, Bradford S, Rothstein S. Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell, 1990, 2: 7–18

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133