全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

Alq3有机发光二极管中的正负磁电导转变

DOI: 10.1360/972011-72, PP. 1425-1430

Keywords: 有机发光二极管,磁电导转变,单极电流,双极化子

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了基于Alq3的有机发光二极管,器件结构为ITO/CuPc/NPB/Alq3/LiF/Al,并在不同温度下测量了器件在恒压偏置下传导电流的磁电导效应.当Alq3发光层的厚度为15nm时,在器件的传导电流从双极电流过渡到单极电流的过程中,器件的磁电导发生了明显的正负转变;而当Alq3发光层的厚度为65nm时,在传导电流从双极电流到单极电流的过渡过程中,器件的磁电导呈现随电流减小先上升后下降的变化趋势,但磁电导的值在任何测量条件下始终为正,并未出现正负转变的现象.双极电流的磁电导效应可用电子-空穴对模型和激子-电荷反应模型来进行解释,而单极电流的磁电导效应虽然可归因于器件中的极化子-双极化子转变,但仍需要进一步的研究.

References

[1]  Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on organic electrophosphorescence. Phys Rev B, 2004, 70: 205303
[2]  Odaka H, Okimoto Y, Yamada T, et al. Control of magnetic-field effect on electroluminescence in Alq3-based organic light emitting diodes. Appl Phys Lett, 2006, 88: 123501
[3]  Sheng Y, Mermer ?, Wohlgenannt M, et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B, 2006, 74: 045213
[4]  Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor. Synth Metal, 2006, 156: 757–761
[5]  Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurement of Alq3-based OLEDs. Phys Rev B, 2007, 75: 094423
[6]  Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem Phys Lett, 2003, 380: 710–715 [2] Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on organic electrophosphorescence. Phys Rev B, 2004, 70: 205303 [3] Mermer ?, Veeraraghavan G, Francis T L, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semiconductor sandwich devices. Solid State Comm, 2005, 134: 631–636 [4] Odaka H, Okimoto Y, Yamada T, et al. Control of magnetic-field effect on electroluminescence in Alq3-based organic light emitting diodes. Appl Phys Lett, 2006, 88: 123501 [5] Sheng Y, Mermer ?, Wohlgenannt M, et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B, 2006, 74: 045213 [6] Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor. Synth Metal, 2006, 156: 757–761 [7] Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurement of Alq3-based OLEDs. Phys Rev B, 2007, 75: 094423 [8] Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6: 985–990 [9] Bloom F L, Wagemans W, Kemerink M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys Rev Lett, 2007, 99: 257201 [10] Bloom F L, Wagemans W, Kemerink M, et al. Correspondence of the sign change in organic magnetoresistance with the onset of bipolar charge transport. Appl Phys Lett, 2008, 93: 263302 [11] Nguyen T D, Sheng Y, Wohlgenannt M, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices[J].Phys Rev B.2008, 77:235209- [12] Bergeson J D, Prigodin V N, Lincoln D M, et al. Inversion of magnetoresistance in organic semiconductor. Phys Rev Lett, 2008, 100: 067201 [13] Zhang Y, Liu R, Xiong Z H, et al. Low temperature magnetic field effects in Alq3-based organic light emitting diodes. Appl Phys Lett, 2009, 94: 083307 [14] Hu B, Yan L, Shao M. Magnetic field effect in organic semiconducting materials and devices. Adv Mater, 2009, 21: 1500–1516 [15] Lei Y L, Zhang Y, Liu R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Org Electron, 2009, 10: 889–894 [16] Xin L Y, Li C N, Li F, et al. Inversion of magnetic field effects on electrical current and electroluminescence in tris-(8-hydroxyquinoline) aluminum based light-emitting diodes. Appl Phys Lett, 2009, 95: 123306 [17] Ding B F, Yao Y, Sun Z Y, et al. Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility. Appl Phys Lett, 2010, 97: 163302 [18] Wang F J, B?ssler H, Vardeny Z V. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Phys Rev Lett, 2008, 101: 2368052 [19] Majumdar S, Majumdar H S, Aarnio H, et al. Role of electron-hole pair formation in organic magnetoresistance. Phys Rev B, 2009, 79: 201202(R) [20] Lei Y L, Song Q L, Zhang Y, et al. Magnetoconductance of polymer-fullerene bulk heterojunction solar cells. Org Electron, 2009, 10: 1288–1292 [21] Bloom F L, Kemerink M, Wagemans W, et al. Sign inversion of magnetoresistance in space-charge limited organic devices. Phys Rev Lett, 2009, 103: 066601 [22] Bobbert P A, Nguyen T D, Wohlgenannt M, et al. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett, 2007, 99: 216801 [23] Ern V, Merrifield R E. Magnetic field effect on triplet exciton quenching in organic crystals. Phys Rev Lett, 1968, 21: 609–611 [24] Wittmer M, Zshokke-Granacher I. Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene. J Chem Phys, 1975, 63: 4187–4194
[7]  Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem Phys Lett, 2003, 380: 710–715
[8]  Mermer ?, Veeraraghavan G, Francis T L, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semiconductor sandwich devices. Solid State Comm, 2005, 134: 631–636
[9]  Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6: 985–990
[10]  Bloom F L, Wagemans W, Kemerink M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys Rev Lett, 2007, 99: 257201
[11]  Bloom F L, Wagemans W, Kemerink M, et al. Correspondence of the sign change in organic magnetoresistance with the onset of bipolar charge transport. Appl Phys Lett, 2008, 93: 263302
[12]  Nguyen T D, Sheng Y, Wohlgenannt M, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices[J].Phys Rev B.2008, 77:235209-
[13]  Bergeson J D, Prigodin V N, Lincoln D M, et al. Inversion of magnetoresistance in organic semiconductor. Phys Rev Lett, 2008, 100: 067201
[14]  Zhang Y, Liu R, Xiong Z H, et al. Low temperature magnetic field effects in Alq3-based organic light emitting diodes. Appl Phys Lett, 2009, 94: 083307
[15]  Hu B, Yan L, Shao M. Magnetic field effect in organic semiconducting materials and devices. Adv Mater, 2009, 21: 1500–1516
[16]  Lei Y L, Zhang Y, Liu R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Org Electron, 2009, 10: 889–894
[17]  Xin L Y, Li C N, Li F, et al. Inversion of magnetic field effects on electrical current and electroluminescence in tris-(8-hydroxyquinoline) aluminum based light-emitting diodes. Appl Phys Lett, 2009, 95: 123306
[18]  Ding B F, Yao Y, Sun Z Y, et al. Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility. Appl Phys Lett, 2010, 97: 163302
[19]  Wang F J, B?ssler H, Vardeny Z V. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Phys Rev Lett, 2008, 101: 2368052
[20]  Majumdar S, Majumdar H S, Aarnio H, et al. Role of electron-hole pair formation in organic magnetoresistance. Phys Rev B, 2009, 79: 201202(R)
[21]  Lei Y L, Song Q L, Zhang Y, et al. Magnetoconductance of polymer-fullerene bulk heterojunction solar cells. Org Electron, 2009, 10: 1288–1292
[22]  Bloom F L, Kemerink M, Wagemans W, et al. Sign inversion of magnetoresistance in space-charge limited organic devices. Phys Rev Lett, 2009, 103: 066601
[23]  Bobbert P A, Nguyen T D, Wohlgenannt M, et al. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett, 2007, 99: 216801
[24]  Ern V, Merrifield R E. Magnetic field effect on triplet exciton quenching in organic crystals. Phys Rev Lett, 1968, 21: 609–611
[25]  Wittmer M, Zshokke-Granacher I. Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene. J Chem Phys, 1975, 63: 4187–4194

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133