全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

纳滤体器件在生物分子分离中的研究进展

DOI: 10.1360/972010-1950, PP. 1411-1418

Keywords: 纳滤体器件,生物分子,分离

Full-Text   Cite this paper   Add to My Lib

Abstract:

人类对生物体系的理解取决于生物分子高效准确的挑选和分离.随着纳滤体器件(Nanofilter)的蓬勃发展,其在生物分子分离领域的应用受到了广泛关注,并成为无胶体系生物分子分离的热点之一.本文结合纳滤体器件的产生及发展,从纳滤体器件的设计及理论模型两方面重点阐述了纳滤体器件在生物分子分离方面的研究进展,并对纳滤体器件的计算机模拟进行了讨论.近年来,相比于传统的生物分子分离方法,纳滤体器件所具有的优势日益突出.而纳米技术的进一步发展,也使其具有很好的应用前景.

References

[1]  2 Fu J, Schoch R B, Stevens A L, et al. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nano, 2007, 2: 121–128??
[2]  3 Fu J, Yoo J, Han J. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys Rev Lett, 2006, 97: 018103??
[3]  7 Madabhushi R S, Vainer M, Dolnik V, et al. Versatile low-viscosity sieving matrices for nondenaturing DNA separations using capillary array electrophoresis. Electrophoresis, 2005, 18: 104–111
[4]  8 耿利娜, 姜萍, 徐建栋, 等. 纳米技术在毛细管电泳和微流控芯片电泳生物大分子分离中的应用. 化学进展, 2009, 21: 1905–1921
[5]  9 Volkmuth W D, Austin R H. DNA electrophoresis in microlithographic arrays. Nature, 1992, 358: 600–602??
[6]  10 Han J, Turner S W, Craighead H G. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett, 1999, 83: 1688??
[7]  22 Flachsbart B R, Wong K, Iannacone J M, et al. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip, 2006, 6: 667–674??
[8]  24 Baba M, Sano T, Iguchi N, et al. DNA size separation using artificially nanostructured matrix. Appl Phys Lett, 2003, 83: 1468–1470??
[9]  27 Huang L R, Cox E C, Austin R H, et al. Continuous particle separation through deterministic lateral displacement. Science, 2004, 304: 987–990??
[10]  28 de Gennes P G. Reptation of a polymer chain in the presence of fixed obstacles. Jo Chem Phys, 1971, 55: 572–579??
[11]  30 Bakajin O, Duke T A J, Tegenfeldt J, et al. Separation of 100-kilobase DNA molecules in 10 seconds. Anal Chem, 2001, 73: 6053–6056??
[12]  35 Zeng Y, Harrison D J. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal Chem, 2007, 79: 2289–2295??
[13]  36 Butterman M, Tietz D, Orban L, et al. Ferguson plots based on absolute mobilities in polyacrylamide-gel electrophoresis—dependence of linearity of polymerization conditions and application to the determination of free mobility. Electrophoresis, 1988, 9: 293–298??
[14]  41 Nixon G I, Slater G W. Entropic trapping and electrophoretic drift of a polyelectrolyte down a channel with a periodically oscillating width. Phys Rev E, 1996, 53: 4969??
[15]  42 Rousseau J, Drouin G, Slater G W. Entropic trapping of DNA during gel electrophoresis: Effect of field intensity and gel concentration. Phys Rev Lett, 1997, 79: 1945??
[16]  44 Daoudi S, Brochard F. Flows of flexible polymer solutions in pores. Macromolecules, 1978, 11: 751–758??
[17]  45 Han J, Craighead H G. Entropic trapping and sieving of long DNA molecules in a nanofluidic channel. In: Papers from the 45th National Symposium of the American Vacuum Society, 1998, Baltimore. Maryland, USA: AVS, 1999. 2142–2147
[18]  49 Ando T, Meguro T, Yamato I. Multiple time step brownian dynamics for long time simulation of biomolecules. Mol Simul, 2003, 29: 471–478??
[19]  53 Wang R, Wang J S, Liu G R, et al. Simulation of DNA electrophoresis in systems of large number of solvent particles by coarse-grained hybrid molecular dynamics approach. J Comput Chem, 2009, 30: 505–513??
[20]  56 Li Z, Liu G, Han J, et al. Transport of biomolecules in asymmetric nanofilter arrays. Anal Bioanal Chem, 2009, 394: 427–435??
[21]  1 Fu J, Mao P, Han J. Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett, 2005, 87: 263902–263903??
[22]  4 DeJonge P, DeJongh F C M, Meijers R, et al. Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast, 2004, 2: 193–204
[23]  5 Guttman A, Cooke N. Capillary gel affinity electrophoresis of DNA fragments. Anal Chem, 1991, 63: 2038–2042??
[24]  6 Wu C, Liu T, Chu B. Viscosity-adjustable block copolymer for DNA separation by capillary electrophoresis. Electrophoresis, 2005, 19: 231–241
[25]  11 Han J, Craighead H G. Separation of long DNA molecules in a microfabricated entropic trap array. Science, 2000, 288: 1026–1029??
[26]  12 Austin R. Nanofluidics: A fork in the nano-road. Nat Nano, 2007, 2: 79–80??
[27]  13 Yao S, Anex D S, Caldwell W B, et al. SDS capillary gel electrophoresis of proteins in microfabricated channels. Proc Natl Acad Sci USA, 1999, 96: 5372–5377??
[28]  14 Martin C R. Template synthesis of polymeric and metal microtubules. Adv Mater, 1991, 3: 457–459??
[29]  15 Martin C R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266: 1961–1966??
[30]  16 Jirage K B, Hulteen J C, Martin C R. Nanotubule-based molecular-filtration membranes. Science, 1997, 278: 655–658??
[31]  17 Nishizawa M, Menon V P, Martin C R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science, 1995, 268: 700–702??
[32]  18 Lee S B, Mitchell D T, Trofin L, et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 2002, 296: 2198–2200??
[33]  19 Che G, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393: 346–349??
[34]  20 Turner S W, Perez A M, Lopez A, et al. Monolithic nanofluid sieving structures for DNA manipulation. In: Papers from the 42nd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 1998 June, Chicago. Illinois (USA): AVS, 1998. 3835–3840
[35]  21 Kuo T C, Cannon D M, Chen Y, et al. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem, 2003, 75: 1861–1867??
[36]  23 Huang L R, Tegenfeldt J O, Kraeft J J, et al. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat Biotech, 2002, 20: 1048–1051??
[37]  25 Kaji N, Tezuka Y, Takamura Y, et al. Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal Chem, 2003, 76: 15–22
[38]  26 van Oudenaarden A, Boxer S G. Brownian ratchets: Molecular separations in lipid bilayers supported on patterned arrays. Science, 1999, 285: 1046–1048??
[39]  29 Volkmuth W D, Duke T, Wu M C, et al. DNA electrodiffusion in a 2D array of posts. Phys Rev Lett, 1994, 72: 2117??
[40]  31 Morris C J O R. In: Peeters H, ed. Protides of the Biological Fluids, 14th Colloquium. New York: Elsevier, 1967. 543–551
[41]  32 Ogston A G. The spaces in a uniform random suspension of fibres. Transact Faraday Soc, 1958, 54: 1754–1757??
[42]  33 Rodbard D, Chrambach A. Unified theory for gel electrophoresis and gel filtration. Proc Natl Acad Sci USA, 1970, 65: 970–977??
[43]  34 Giddings J C, Kucera E, Russell C P, et al. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography. J Phys Chem, 1968, 72: 4397–4408??
[44]  37 Viovy J L. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev Modern Phys, 2000, 72: 813??
[45]  38 Smisek D, Hoagland D. Electrophoresis of flexible macromolecules: Evidence for a new mode of transport in gels. Science, 1990, 248: 1221–1223??
[46]  39 Muthukumar M. Entropic barrier model for polymer diffusion in concentrated polymer solutions and random media. J Non-Cryst Solids, 1991, 131-133: 654–666
[47]  40 Slater G W, Song Y W. Reptation, entropic trapping, percolation, and rouse dynamics of polymers in “Random” environments. Phys Rev Lett, 1995, 75: 164??
[48]  43 Nykypanchuk D, Strey H H, Hoagland D A. Brownian motion of DNA confined within a two-dimensional array. Science, 2002, 297: 987–990??
[49]  46 Ajdari A, Prost J. Free-flow electrophoresis with trapping by a transverse inhomogeneous field. Proc Natl Acad Sci USA, 1991, 88: 4468–4471??
[50]  47 Slater G W, Holm C, Chubynsky M V, et al. Modeling the separation of macromolecules: A review of current computer simulation methods. Electrophoresis, 2009, 30: 792–818??
[51]  48 Karplus M, McCammon J A. Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol, 2002, 9: 646–652??
[52]  50 Guerrero-Germán P, Lucero-Acu?a A, Montesinos R M, et al. Analysis and simulation of batch affinity processes applied to separation of Biomolecules. J Mex Chem Soc, 2007, 51: 59–66
[53]  51 Harris S A. Modelling the biomechanical properties of DNA using computer simulation. Philosoph Trans Royal Soc A Math Phys Eng Sci, 2006, 364: 3319–3334??
[54]  52 Kaji N, Oki A, Ogawa R, et al. Influences of electroosmotic flows in nanopillar chips on DNA separation: Experimental results and numerical simulations. Isr J Chem, 2007, 47: 161–169??
[55]  54 Cho J, Dorfman K D. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. J Chromatogr A, 2010, 1217: 5522–5528??
[56]  55 Fayad G N, Hadjiconstantinou N G. A brownian dynamics model of worm-like-biomolecule separation using periodic nanofilter arrays. ASME Conference Proceedings, 2009, 391–397
[57]  57 Streek M, Schmid F, Duong T T, et al. Mechanisms of DNA separation in entropic trap arrays: A Brownian dynamics simulation. J Biotechnol, 2004, 112: 79–89??
[58]  58 Pan H, Ng T Y, Li H, et al. Dissipative particle dynamics simulation of entropic trapping for DNA separation. Sens Actuator A: Phys, 2010, 157: 328–335??
[59]  59 Moeendarbary E, Ng T Y, Pan H, et al. Migration of DNA molecules through entropic trap arrays: A dissipative particle dynamics study. Microfluid Nanofluid, 2010, 8: 243–254??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133