全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

生物可降解高分子形状记忆合金的研究和进展

DOI: 10.1360/972011-28, PP. 1497-1508

Keywords: 形状记忆,高分子,微相分离结构,生物可降解,聚乳酸

Full-Text   Cite this paper   Add to My Lib

Abstract:

高分子形状记忆材料近年来吸引了许多研究者的目光,因其低廉的成本、优异的加工性能、良好的回复性、多变的力学和物理性能等优势迅速地发展起来.但随着石油紧缺和全球暖化等问题,开发绿色、可降解的生物高分子形状记忆材料成为新的发展趋势.其中,绿色材料聚乳酸以其优异的力学强度、生物降解性和生物相容性,在可降解的生物高分子形状记忆材料的研究和应用方面有很大的发展前景.本文主要就生物可降解高分子形状记忆材料的发展现状、形状记忆机理、材料选择和国内外最新研究进展等进行了介绍、评述和展望.

References

[1]  11 Wischke C, Lendlein A. Shape-memory polymers as drug carriers—A multifunctional system. Pharm Res, 2010, 27: 527-529??
[2]  12 Meng Q H, Hu J L, Mondal S. Thermal sensitive shape recovery and mass transfer properties of polyurethane/modified MWNT compositemembranes synthesized via in situ solution pre-polymerization. J Membrane Sci, 2008, 319: 102-110??
[3]  14 Inomata K, Nakagawa K, Fukuda C, et al. Shape memory behavior of poly(methyl methacrylate)-graft-poly(ethylene glycol) copolymers.Polymer, 2010, 51: 793-798??
[4]  16 Ahir S V, Tajbakhsh A R, Terentjev E M. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater,2006, 16: 556-560??
[5]  17 Ishida K, Yoshie N. Two-way conversion between hard and soft properties of semicrystalline crosslinked polymer. Macromolecules, 2008,41: 4753-4757??
[6]  18 Vaia R. Nanocomposites: Remote-controlled actuators. Nat Mater, 2005, 4: 429-430??
[7]  20 Langer R, Tirrell D A. Designing materials for biology and medicine. Nature, 2004, 428: 487-492??
[8]  23 Li F, Zhang X, Hou J, et al. Studies on thermally stimulated shape memory effect of segmented polyurethanes. J Appl Polym Sci, 1997, 64:1511-1516??
[9]  24 Meng Q H, Hu J L. A review of shape memory polymer composites and blends. Compos Pt A-Appl Sci Manuf, 2009, 40: 1661-1672??
[10]  27 Wang W S, Ping P, Chen X S, et al. Shape memory effect of poly(L-lactide) based polyurethanes with different hard segments. Polym Int,2007, 56: 840-846??
[11]  29 Cohn D, Salomon A H. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials, 2005, 26: 2297-2305??
[12]  30 Behl M, Lendlein A. Shape-memory polymers. Mater Today, 2007, 10: 20-28
[13]  32 Cheung H Y, Lau K T, Lu T P, et al. A critical review on polymer-based bio-engineered materials for scaffold development. Compos PtB-Eng, 2007, 38: 291-300??
[14]  33 Wang Y L, Huang M N, Luo Y F, et al. In vitro degradation of poly(lactide-co-p-dioxanone)-based shape memory poly(urethaneeurea).Polym Degrad Stabil, 2010, 95: 549-556??
[15]  37 Lendlein A, Zotzmann J, Feng Y K, et al. Controlling the switching temperature of biodegradable, amorphous, shape-memorypoly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules, 2009, 10: 975-982??
[16]  38 Meng Q H, Hu J L, Chen S J. The shape memory properties of biodegradable chitosan/poly(L-lactide) composites. Polym Environ, 2009,17: 212-224??
[17]  40 Wang W, Jin Y, Su Z H, et al. Structure evolution in segmented poly(ester urethane) in shape-memory process. Macromolecules, 2010, 43:2942-2947??
[18]  41 Yang Z H, Hu J L, Liu Y Q, et al. The study of crosslinked shape memory polyurethanes. Mater Chem Phys, 2006, 98: 368-372??
[19]  42 Lendlein A, Jiang H, Junger O, et al. Light-induced shape-memory polymers. Nature, 2005, 434: 879-882??
[20]  1 Charlesby A. Cross-linking of polythene by pile radiation. Proc R Soc Lond A, 1952, 215: 187-214??
[21]  2 Cai W, Liu L L. Shape-memory effect of poly(glycerol-sebacate) elastomer. Mater Lett, 2008, 62: 2171-2173??
[22]  3 Wong Y S, Venkatraman S S. Recovery as a measure of oriented crystalline structure in poly(L-lactide) used as shape memory polymer.Acta Mater, 2010, 58: 49-58??
[23]  4 Zhu G M, Xu S G, Wang J H, et al. Radiation physics and shape memory behaviour of radiation-crosslinked PCL/PMVS blends. Chemistry,2006, 75: 443-448
[24]  5 Zheng X T, Zhou S B, Li X H, et al. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials, 2006, 27:4288-4295??
[25]  6 Wischke C, Neffe A T, Steuer S, et al. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. JControl Release, 2009, 138: 243-250??
[26]  7 Deka H, Karak N, Kalita R D, et al. Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shapememory materials. Carbon, 2010, 48: 2013-2022??
[27]  8 Wang W S, Ping P, Chen X S, et al. Polylactide-based polyurethane and its shape-memory behavior. Eur Polym J, 2006, 42: 1240-1249??
[28]  9 Yang J, Liu F, Yang L, et al. Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-D,L-lactide) random copolymerswith shape memory behavior. Eur Polym J, 2010, 46: 783-791??
[29]  10 Yakacki C M, Shandas R, Safranski D, et al. Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater, 2008, 18:2428-2435??
[30]  13 Liu C, Qin H, Mather P T. Review of progress in shape-memory polymers. J Mater Chem, 2007, 17: 1543-1558??
[31]  15 Rabani G, Luftmann H, Kraft A. Synthesis and characterization of two shape-memory polymers containing short aramid hard segmentsand poly(3-caprolactone) soft segments. Polymer, 2006, 47: 4251-4260??
[32]  19 Koerner H, Price G, Pearce N A, et al. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermalplasticelastomers. Nat Mater, 2004, 3: 115-120??
[33]  21 Cuevas J M, Alonso J, German L, et al. Magneto-active shape memory composites by incorporating ferromagnetic microparticles in athermo-responsive polyalkenamer. Smart Mater Struct, 2009, 18: 075003??
[34]  22 Zhang H, Wang H T, Zhong W, et al. A novel type of shape memory polymer blend and the shape memory mechanism. Polymer, 2009, 50:1596-1601??
[35]  25 Debdatta R J, Karger K. Recent advances in shape memory polymers and composites: A review. Mater Sci, 2008, 43: 254-269??
[36]  26 Sakurai S, Yoshida H, Hashimoto F, et al. Ultra small-angle X-ray scattering studies on structural changes in micrometers upon uniaxialstretching of segmented polyurethaneureas. Polymer, 2009, 50: 1566-1576??
[37]  28 Chen S J, Hu J L, Zhuo H T, et al. Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane.Polymer, 2010, 51: 240-248??
[38]  31 Zini E, Scandola M. Shape memory behavior of novel (L-lactide-glycolide-trimethylene carbonate) terpolymers. Biomacromolecules,2007, 8: 3661-3667??
[39]  34 Zhang W, Chen L, Zhang Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer,2009, 50: 1311-1315??
[40]  35 Min C C, Cui W J, Bei J Z, et al. Biodegradable shape-memory polymer—Polylactide-co-poly(glycolide-co-caprolactone) multiblock copolymer.Polym Adv Technol, 2005, 16: 608-615??
[41]  36 Liu Y P, Gall K, Dunn M L, et al. Thermomechanics of shape memory polymer nanocomposites. Mech Mater, 2004, 36: 929-940??
[42]  39 Zhuo H T, Hu J L, Chen S J. Electrospun polyurethane nanofibres having shape memory effect. Mater Lett, 2008, 62: 2074-2076??
[43]  43 Chen S J, Hu J L, Zhuo H T, et al. Two-way shape memory effect in polymer laminates. Mater Lett, 2008, 62: 4088-4090??
[44]  44 Mantovani D. Shape memory alloys: Properties and biomedical applications. Smart Mater, 2000, 52: 36-44
[45]  45 Kolesov I S, Kratz K, Lendlein A, et al. Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chainbranched polyethylenes. Polymer, 2009, 50: 5490-5498??
[46]  46 Zhong Q, Ren J, Wang Q F. Preparation and characterization of polylactide-block-poly(butylene adipate) polyurethane thermoplasticelastomer. Polym Eng Sci, 2011, 51: 908-916??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133