全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

表面增强光谱和表面等离激元共振传感器

DOI: 10.1360/972010-2202, PP. 1585-1592

Keywords: 表面等离激元,表面增强拉曼光谱,表面增强荧光

Full-Text   Cite this paper   Add to My Lib

Abstract:

表面等离激元光子学是研究光和金属表面自由电子耦合所引起金属表面电荷密度振荡的性质及其应用的一门学科.金属中的自由电子在入射光的作用下产生集体振荡.在垂直表面的方向上强度呈指数衰减,使得亚波长金属结构中光场高度局域.由于独特的光学性质,使得其具有广泛的应用,其中两个重要的分支为表面增强光谱和表面等离激元共振传感器.表面增强光谱传感器是利用纳米结构的巨大表面增强效应来直接探测表面分子,表面等离激元共振传感器通过检测目标分子对等离激元共振峰的影响进行定性定量检测.这两种优势互补的传感器技术都可以达到单细胞甚至单分子的检测水平.本文将论述表面等离激元光子学的原理、表面增强光谱和表面增强光谱传感器研究领域的国内外最新进展和发展趋势.

References

[1]  1 Hlaa S W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J VacSci Tech B, 2005, 23: 1351-1360??
[2]  2 Wu T P, Ruan K C, Liu W Y. A fluorescence-labeling method for sequencing small RNA on polyacrylamide gel. Nucleic Acids Res, 1996,24: 3472-3473??
[3]  3 Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005, 4: 435-446??
[4]  4 Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering SERS. Phys Rev Lett, 1997, 78:1667-1670??
[5]  7 Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys, 1985, 57: 783-826??
[6]  8 Ebbessen T W, Lezec H J, Ghaemi H F, et al. Extroordinary optical transission through sub-wavelength hole arrays. Nature, 1998, 391:667-669??
[7]  9 Ditlabacher H, Hohenau A, Wagner D, et al. Silver nanowies as surface plasmon resonators. Phys Rev Lett, 2005, 95: 257403??
[8]  11 Kowalska E, Mahaney O O P, Abe R, et al. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titaniasurfaces. Phys Chem Chem Phys, 2010, 12: 2344-2355
[9]  13 Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D: Appl Phys, 2008, 41: 013001??
[10]  14 Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. J Sensors Actuat B, 1999, 54: 3-15??
[11]  18 Homola J. Surface plasmon resonance SPR biosensors and their applications in food safety and security. In: NATO Advanced ResearchWorkshop on Frontiers in Planar Lightwave Circuit Technology Ottawa, CANADA, 2004, 21-25
[12]  19 Barnes W T, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830??
[13]  21 Podolskiy V A. Plasmon modes and negative refraction in metal nanowire composites. Opt Express, 2003, 11: 735-745??
[14]  22 Halas N. The optical properties of nanoshells. Opt Photon News, 2002, 13: 26-30
[15]  23 Wei H, Coronado A R, Nordlander P, et al. Multipolar plasmon resonances in individual Ag nanorice. ACS Nano, 2010, 4: 2649-2654??
[16]  25 Silkina V M, Chulkov E V. Energy and lifetime of surface plasmon from first-principles calculations. Vacuum, 2006, 81: 186-191??
[17]  35 Sun X P, Dong S J, Wang E K. Large-scale synthesis of micrometer scale single crystalline Au plates of nanometer thickness by awet-chemical route. Angew Chem Int Ed, 2004, 43: 6360-6363??
[18]  36 Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhancedfluorescence. J Phys Chem B, 2005, 109: 6247-6251??
[19]  37 Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonanceby finite difference time domain method. J Phys Chem B, 2003, 107: 7607-7617??
[20]  38 Yang W H, Schatz G C, Duyne R P V. Discrete dipole approximation for calculating extinction and Raman intensities for small particleswith arbitrary shapes. J Chem Phys, 1995, 103: 869-875??
[21]  39 Micic M, Klymyshyn N, Suh Y D, et al. Finite element method simulation of the field distribution for AFM tip enhanced surface enhancedRaman scanning microscopy. J Phys Chem B, 2003, 107: 1574-1584??
[22]  40 Drexhage K H. Influence of a dielectric interface on fluorescence decay time. J Lumin, 1970, 1-2: 693-701
[23]  45 Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonanceguidance. Proc Natl Acad Sci USA, 2003, 100: 13549-13554??
[24]  46 Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev,2006, 35: 1084-1094??
[25]  5 Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275:1102-1106??
[26]  6 Xu H X, Bjerneld E J, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett,1999, 83: 4357-4360??
[27]  10 Xu H X, Kall M. Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett, 2002, 89: 246802??
[28]  12 Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science, 2004, 306: 1002-1005??
[29]  15 Yuk J S, Jung S H, Jung J W, et al. Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmonresonance biosensor. Proteomics, 2004, 4: 3468-3476??
[30]  16 Jin W, Lin X, Lv S, et al. A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosens Bioelectron,2009, 245: 1266-1269
[31]  17 Myszka D G, Rich R L. Implementing surface plasmon resonance biosensors in drug discovery. Pharm Sci Tech Today, 2000, 3: 310-317??
[32]  20 Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686??
[33]  24 Bosbach J, Hendrich C, Stietz F, et al. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influences of particle size,shape, and chemical surrounding. Phys Rev Lett, 2002, 89: 257404??
[34]  26 Fleichmann M, Hendra P J, McQuillan A J. Raman spetra of pyridine absorbed at a silver electrode. Chem Phys Lett, 1974, 262: 163-166
[35]  27 Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to orderednanostructures. J Phys Chem B, 2002, 106: 9463-9483??
[36]  28 Hao E, Schatz G C. Electromagnetic fields around silver naoparticles and dimmers. J Chem Phys, 2004, 1201: 357-366
[37]  29 Lecomte S, Matejka P, Baron M H. Correlation between surface enhanced Raman scattering and absorbance changes in silver colloidsevidence for the chemical enhancement mechanism. Langmuir, 1998, 14: 4373-4377??
[38]  30 Lombardi J R, Birke R L, Lu T H, et al. Charge transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. JChem Phys, 1986, 848: 4174-4180
[39]  31 Gerstena J I, Nitzan A. Photophysics and photochemistry near surfaces and small particles. Surf Sci, 1985, 158: 1-3??
[40]  32 Tian J H, Liu B, Li X L, et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllablebreak junction method. J Am Chem Soc, 2006, 128: 14748-14749??
[41]  33 Lindsey J S. Self-assembly in synthetic to molecular devices, biological principles and chemical persperctives: A review. New J Chem,1991, 15: 153-180
[42]  34 Stockle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett, 2000, 318:131-136??
[43]  41 Drexhage K H. Interaction of light with monomolecular dye lasers. In: Wolfe E, ed. Progress in Optics. Amsterdam: North-Holland, 1974.161-232
[44]  42 Gersten J, Nitzan A J. Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys, 1998, 75:1139-1152
[45]  43 Lakowicz J R. Princples of Florescence Spectroscopy. 2nd ed. New York: Kluwer Academic, 1999. 368-391
[46]  44 Marras S A E, Kramer F R, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotideprobes. Nucleic Acids Res, 2002, 30: e122??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133