1 Blackford. Palaeoclimatic records from peat bogs. Trends Ecol Evol, 2000, 15: 193-198??
[2]
2 Ménot-Combes G, Burns S J, Leuenberger M. Variations of 18O/16O in plants from temperate peat bogs(Switzerland): Implications forpaleoclimatic studies. Earth Planet Sci Lett, 2002, 202: 419-434??
[3]
3 Hong Y T, Wang Z G, Jiang H B. A 6000-year record of changes in drought and precipitation in northeastern China based on a 13C timeseries from peat cellulose. Earth Planet Sci Lett, 2001, 185: 111-119??
10 Sinninghe Damsté J S, Ossebaar J, Schouten S. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro(Tanzania): Implications for the MBT/CBT continental palaeothermometer. Org Geochem, 2008, 39: 1072-1076??
[7]
12 Peterse F, Schouten S, van der Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for theMBT/CBT temperature proxy. Org geochem, 2009, 40: 201-205??
[8]
13 Schouten S, Hopmans E C, Schefuβ E, et al. Distributional variations in marine crenarchaeotal membrance lipids: A new tool forreconstructing ancient sea water temperatures? Earth Planet Sci Lett, 2002, 204: 265-274
24 Appleby P G, Nolan P J, Gifford D W, et al. 210Pb dating by low background gamma counting. Hydrobiologia, 1986, 143: 21-27??
[13]
25 Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetrameter lipids in archaeal cell material and sediments by highperformance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Sp, 2000, 14:585-589??
[14]
27 Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanylglycerol tetraether lipids. Org Geochem, 2007, 37: 1036-1041
[15]
28 Weijers J W H, Schouten S, van der Linden M, et al. Water table related variations in the abundance of intact archaeal membrane lipids ina Swedish peat bog. FEMS Microbiol Lett, 2004, 239: 51-56.??
[16]
29 Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for theuse of the TEX86 proxy and the BIT index. Org Geochem, 2006, 37: 1680-1693??
[17]
35 Walsh E M, Ingalls A E, Keil R G. Sources and transport of terrestrial organic matter in Vancouver Island fjords and theVancouver-Washington Margin: A multiproxy approach using δ13Corg, lignin phenols, and the ether lipid BIT index. Limnol Oceanogr,2008, 53: 1054-1063??
[18]
36 Tyler J J, Nederbragt A J, Jones V J, et al. Assessing past temperature and soil pH estimates from bacterial tetraether membrane lipids:Evidence from the recent lake sediments of Lochnagar, Scotland. J Geophys Res, 2010, 115, doi: 10.1029/2009JG001109
[19]
39 Zink K G, Vandergoes M J, Mangelsdorf K, et al. Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to developmodern and past temperature estimates from New Zealand lakes. Org Geochem, 2010, 41: 1060-1066??
9 Weijers J W H, Schouten S, van den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils.Geochim Cosmochim Acta, 2007, 71: 703-713??
[25]
11 Schouten S, Eldrett J, Greenwood D R, et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed bybranched tetraether lipids. Geology, 2008, 36: 147-150??
[26]
14 Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaealtraits. Environ Microbiol, 2006, 8: 648-657??
[27]
15 Weijers J W H, Schefuβ E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation.Science, 2007, 315: 1701-1704??
[28]
16 Weijers J W H, Schouten S, Sluijs A. Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth Planet Sci Lett,2007, 261: 230-238??
[29]
17 Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments(Svalbard, Norway). Org Geochem, 2009, 40: 692-699??
26 Schouten S, Huguet C, Hopmans E C, et al. Analytical methodology for TEX86 paleothermometry by high-performance liquidchromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem, 2007, 79: 2940-2944??
[34]
30 Sinninghe Damsté J S, Hopmans E C, Richard D, et al. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids insediments. Roy Soc Chem, 2000, 17: 1683-1684
[35]
31 Schouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for theubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA, 2000, 97: 14421-14426??
[36]
32 Kim J H, Schouten S, Buscail R, et al. Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions):Exploring the newly developed BIT index. Geochem Geophys Geosys, 2006, 7: 1-20
[37]
33 Rueda G, Rosell-Melé A, Escala M, et al. Comparison of instrumental and GDGT based estimates of sea surface and air temperatures fromthe Skagerak. Org Geochem, 2009, 40: 287-291??
[38]
34 Hopmans E C, Weijers J W H, Schefuβ E, et al. A novel proxy for terrestrial organic matter in sediments based on branched andisoprenoid tetraether lipids. Earth Planet Sci Lett, 2004, 224: 107-116??
[39]
37 Tierney J E, Russell J M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of theMBT/CBT paleoproxy. Org Geochem, 2009, 40: 1032-1036??
[40]
38 Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints onthe application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim Cosmochim Acta, 2009, 73: 4232-4249??