全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

强迫对流换热冷却的产热体(火积)耗散率最小构形优化

, PP. 2032-2039

Keywords: (火积)耗散极值原理,构形理论,强迫对流换热,(火积)耗散率,广义热力学优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用耗散极值原理和构形理论,对强迫对流换热冷却的产热体进行构形优化设计,得到了基于耗散率最小的最优管间距和最优管道直径.结果表明,基于耗散率最小与最大温差最小的最优构形明显不同.对于前者,换热通道的体在整个产热体中最优占比为1/2;而对于后者,该占比越大越好.与后者的最优构形相比,前者的最优构形极大地降低了产热体的当量热阻,明显改善了产热体的整体传热性能.基于耗散极值原理时,传递相同热量(给定发热体的发热量)所需的传热温差是最小的,符合耗散极值原理的本质要求.

References

[1]  1 Bejan A. Street network theory of organization in nature. J Adv Trans, 1996, 30: 85-107??
[2]  6 Bejan A, Lorente S, Miguel A, et al. Along with Constructal Theory. UNIL FGSE Workshop Series No. 1, Hernandez J and Cosinschi M,eds., University of Lausanne, Faculty of Geosciences and the Environment, Switzerland, 2006
[3]  7 Bejan A, Merkx G. Constructal Theory of Social Dynamics. New York: Springer, 2007
[4]  13 Zhou S B, Chen L G, Sun F R. Optimization of constructal volume-point conduction with variable cross-section conducting path. EnergyConvers Mgmt, 2007, 48: 106-111
[5]  14 周圣兵, 陈林根, 孙丰瑞. 基于三角形单元体的气-固反应器构形优化. 中国科学E 辑: 技术科学, 2008, 38: 764-772
[6]  15 谢志辉, 陈林根, 孙丰瑞. 基于热流与强度复合目标的立式绝热壁构形优化. 中国科学: 技术科学, 2011, 41: 809-820
[7]  16 Xiao Q H, Chen L G, Sun F R. Constructal optimization for “disc-to-point” heat conduction without the premise of optimized last-orderconstruct. Int J Therm Sci, 2011, 50: 1031-1036??
[8]  17 Bejan A. Entropy Generation Minimization. New York: Wiley, 1996
[9]  18 Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-EquibriThermodyn, 1999, 24: 327-359
[10]  21 过增元, 魏澍, 程新广. 换热器强化的场协同原理. 科学通报, 2003, 48: 2324-2327
[11]  23 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用. 科学通报, 2008, 53: 489-492
[12]  24 刘伟, 刘志春, 过增元. 对流换热层流流场的物理量协同与传热强化分析. 科学通报, 2009, 54: 1779-1785
[13]  25 刘伟, 刘志春, 黄素逸. 湍流换热的场物理量协同与传热强化分析. 科学通报, 2010, 55: 281-288
[14]  26 李志信. 过增元. 对流传热优化的场协同理论. 北京: 科学出版社, 2010
[15]  27 Ordonez J C. Integrative energy-systems design: System structure from thermodynamic optimization. Doctoral Disseration. Durham:Duke University, 2003
[16]  28 Bello-Ochende T, Bejan A. Fitting the duct to the “body” of the convective flow. Int J Heat Mass Transfer, 2003, 46: 1693-1701??
[17]  30 Matos R S, Laursen T A, Vargas J V C, et al. Three-dimensional optimization of staggered finned circular and elliptic tubes in forcedconvection. Int J Therm Sci, 2004, 43: 477-487??
[18]  34 Kim S, Lorente S, Bejan A. Dendritic vascularization for countering intense heating from the side. Int J Heat Mass Transfer, 2008, 51:5877-5886??
[19]  36 Rocha L A O, Lorente S, Bejan A. Tree-shaped vascular wall designs for localized intense cooling. Int J Heat Mass Transfer, 2009, 52:4535-4544??
[20]  39 过增元, 程新广, 夏再忠. 最小热量传递势容(火积)耗散函数原理及其在导热优化中的应用. 科学通报, 2003, 48: 21-25
[21]  40 韩光泽, 朱宏晔, 程新广, 等. 导热与弹性系统及导电的相似性. 工程热物理学报, 2005, 26: 1022-1024
[22]  42 朱宏晔, 陈泽敬, 过增元. (火积)耗散极值原理的电热模拟实验研究. 自然科学进展, 2007, 17: 1692-1698
[23]  43 柳雄斌, 过增元, 孟继安. 换热器中的(火积)耗散与热阻分析. 自然科学进展, 2008, 18: 1186-1190
[24]  45 柳雄斌, 孟继安, 过增元. 换热器参数优化中的熵产极值和(火积)耗散极值. 科学通报, 2008, 52: 3026-3029
[25]  46 柳雄斌, 过增元. 换热器性能分析新方法. 物理学报, 2009, 58: 4766-4771
[26]  47 吴晶, 梁新刚. (火积)耗散极值原理在辐射换热优化中的应用. 中国科学E 辑: 技术科学, 2009, 39: 272-277
[27]  48 胡腾, 闵敬春, 宋耀祖. 膜换湿过程吸附热对传热过程的影响分析. 中国科学E 辑: 技术科学, 2009, 39: 1725-1729
[28]  49 程雪涛, 徐向华, 梁新刚. 温度场与温度梯度场的均匀化. 中国科学E 辑: 技术科学, 2009, 39: 1730-1735
[29]  51 陈群, 任建勋, 过增元. 质量积(火积)耗散极值原理及其在空间站通风排污过程优化中的应用. 科学通报, 2009, 54: 1606-1612
[30]  53 夏少军, 陈林根, 孙丰瑞. 换热器(火积)耗散最小优化. 科学通报, 2009, 54: 2240-2246
[31]  56 郭江峰, 许明田, 程林. 换热器设计中的(火积)耗散均匀性原则. 中国科学: 技术科学, 2010, 40: 671-676
[32]  57 夏少军, 陈林根, 孙丰瑞. 液-固相变过程(火积)耗散最小化. 中国科学: 技术科学, 2010, 40: 1521-1529
[33]  58 Xia S J, Chen L G, Sun F R. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiativeheat transfer law. Appl Math Modell, 2010, 34: 2242-2255??
[34]  59 Guo Z Y, Liu X B, Tao W, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis, Int J Heat Mass Transfer,2010, 53: 2877-2884??
[35]  60 魏曙寰, 陈林根, 孙丰瑞. 基于矩形单元体的以(火积)耗散最小为目标的“体点”导热构形优化. 中国科学E 辑: 技术科学, 2009, 39:278-285
[36]  64 魏曙寰, 陈林根, 孙丰瑞. 以(火积)耗散最小为目标的电磁体多学科构形优化. 中国科学E 辑: 技术科学, 2009, 39: 1606-1613
[37]  65 Wei S H, Chen L G, Sun F R. Constructal complex-objective optimization of electromagnet based on magnetic induction and maximumtemperature difference. Rev Mexi Fis, 2010, 56: 245-250
[38]  67 谢志辉, 陈林根, 孙丰瑞. T 形腔(火积)耗散最小构形优化. 科学通报, 2009, 54: 2605-2612
[39]  68 Xie Z H, Chen L G, Sun F R. Geometry optimization of T-shaped cavities according to constructal theory. Math Comp Modell, 2010, 52:1538-1546??
[40]  70 肖庆华, 陈林根, 孙丰瑞. 基于(火积)耗散率最小的“盘点”导热构形优化. 科学通报, 2010, 55: 2427-2437
[41]  71 肖庆华, 陈林根, 孙丰瑞. 基于(火积)耗散率和流阻最小的冷却流道构形优化. 中国科学: 技术科学, 2011, 41: 251-261
[42]  73 肖庆华, 陈林根, 孙丰瑞. 基于单元体外形变化的(火积)耗散最小导热构形优化. 科学通报, 2011, 56:1401-1410
[43]  74 Xiao Q H, Chen L G, Sun F R. Constructal design for a steam generator based on entransy dissipation extreme principle. Sci ChinaTechnol Sci, 2011, 54: 1462-1468
[44]  2 Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, UK, 2000
[45]  3 Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME, J Heat Transfer, 1997, 40:799-816
[46]  4 周圣兵, 陈林根, 孙丰瑞. 构形理论: 广义热力学优化的新方向之一. 热科学与技术, 2004, 3: 283-292
[47]  5 Bejan A, Lorente S. The Constructal Law (La Loi Constructale). Paris: L' Harmatan, 2005
[48]  8 Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008
[49]  9 Bejan A, Lorente S, Miguel A, et al. Constructal Human Dynamics, Security & Sustainability. Amsterdam: IOS Press, 2009
[50]  10 伍文君, 陈林根, 孙丰瑞. 导热优化的“树网”构造法的改进. 中国科学E 辑: 技术科学, 2006, 36: 773-781
[51]  11 周圣兵, 陈林根, 孙丰瑞. 基于构形理论的“体-点”导热熵产生最小化. 热科学与技术, 2007, 6: 294-299
[52]  12 Wu W J, Chen L G, Sun F R. On the “area to point” flow problem based on constructal theory. Energy Convers Mgmt, 2007, 48: 101-105??
[53]  19 Guo Z Y, Li D Y, Wang B. A novel concept for convective heat transfer enhancement. Int J Heat Mass Transfer, 1998, 41: 2221-2225??
[54]  20 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同. 科学通报, 2000, 45: 2118-2122
[55]  22 Guo Z Y, Tao W, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heattransfer. Int J Heat Mass Transfer, 2005, 48: 1797-1807??
[56]  29 Matos R S, Vargas J V C, Laursen T A, et al. Optimally staggered finned circular and elliptic tubes in forced convection. Int J Heat MassTransfer, 2004, 47: 1347-1359??
[57]  31 Walsh E J, Grimes R. Constructal theory of the minimum requirements for forced convection cooling solutions. In: Proc 2005 ASMESummer Heat Transfer Confer., July 17-22, 2005, San Francisco, California, USA
[58]  32 Muzychka Y S. Constructal design of force convection cooled microchannel heat sinks and heat exchangers. In:ASME Int Conference onMicrochannels and Minichannels, June 13-15, 2005, Toronto, Ontario, Canada
[59]  33 Robbe M, Sciubba E. Derivation of the optimal internal cooling geometry of a prismatic slab: Comparison of constructal andnon-constructal geometries. Energy, 2009, 34: 2167-2174??
[60]  35 Kim S, Lorente S, Bejan A. Transient behavior of vascularized walls exposed to sudden heating. Int J Therm Sci, 2009, 48: 2046-2052??
[61]  37 Wang K M, Lorente S, Bejan A. The transient response of vascular composites cooled with grids and radial channels. Int J Heat MassTransfer, 2009, 52: 4175-4183??
[62]  38 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50:2545-2556??
[63]  41 韩光泽, 过增元. 导热能力损(火积)耗的机理及其数学表述. 中国电机工程学报, 2007, 27: 98-102
[64]  44 陈群, 任建勋. 对流换热过程的广义热阻及其与(火积)耗散的关系. 科学通报, 2008, 53: 1730-1736
[65]  50 王松平, 陈清林, 张冰剑, 等. 强化单项对流换热的一般理论指导原则. 中国科学E 缉: 技术科学, 2009, 39: 1949-1957
[66]  52 王松平, 陈清林, 张冰剑. (火积)传递方程及其应用. 科学通报, 2009, 54: 2247-2251
[67]  54 郭江峰, 程林, 许明田. (火积)耗散数及其应用. 科学通报, 2009, 54: 2998-3002
[68]  55 陈林, 陈群, 李震, 等. 溶液除湿性能分析和优化的湿阻法. 科学通报, 2010, 55: 1174-1181
[69]  61 Wei S H, Chen L G, Sun F R. Constructal entransy dissipation minimization for “volume-point” heat conduction based on triangular element.Therm Sci, 2010, 14: 1075-1088??
[70]  62 Wei S H, Chen L G, Sun F R. Constructal entransy dissipation minimization for “volume-point” heat conduction without the premise ofoptimized last-order construct. Int J Energy, 2010, 7: 627-639
[71]  63 魏曙寰, 陈林根, 孙丰瑞. 基于(火积)耗散率最小的离散和连续变截面导热通道构形优化. 中国科学: 技术科学, 2010, 40: 1189-1200
[72]  66 谢志辉, 陈林根, 孙丰瑞. 以(火积)耗散最小为目标的空腔几何构形优化. 中国科学E 辑: 技术科学, 2009, 39: 1949-1957
[73]  69 谢志辉, 陈林根, 孙丰瑞. T 形肋(火积)耗散率最小与最大热阻最小构形优化的比较研究. 中国科学: 技术科学, 2011, 41: 962-970
[74]  72 肖庆华, 陈林根, 孙丰瑞. 基于(火积)耗散率最小的伞形柱状肋片构形优化. 中国科学: 技术科学, 2011, 41: 365-373

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133