1 IARC. IARC monographs on the evaluation of carcinogenic risks to humans: Occupational exposures in insecticide application, and somepesticides. Pentachlorophenol, 1991, 53: 371-402
[2]
5 Chhabra R S, Maronpot R M, Bucher J R, et al. Toxicology and carcinogenesis studies of pentachlorophenol in rats. Toxicol Sci, 1999, 48:14-20??
[3]
6 Renner G, Mucke W. Transformations of pentachlorophenol. Part I: Metabolism in animals and man. Toxicol Environ Chem, 1986, 11:9-29??
[4]
7 Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Oxford : Oxford University Press, 2007
[5]
8 Zhu B Z, Kitrossky N, Chevion M. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide:A metal-independent organic Fenton reaction. Biochem Biophys Res Commun, 2000, 270: 942-946??
[6]
11 Jia S, Zhu B Z, Guo L H. Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemicalDNA sensor. Anal Bioanal Chem, 2010, 397: 2395-2400??
[7]
12 Zhu B Z, Zhao H T, Kalyanaraman B, et al. Mechanism of metal-independent decomposition of organic hydroperoxides and formation ofalkoxyl radicals by halogenated quinones. Proc Natl Acad Sci USA, 2007, 104: 3698-3702??
[8]
13 Zhu B Z, Shan G Q, Huang C H, et al. Metal-independent decomposition of hydroperoxides by halogenated quinones: Detection andidentification of a quinone ketoxy radical. Proc Natl Acad Sci USA, 2009, 106: 11466-11471??
[9]
14 Witte I, Juhl U, Butte W. DNA-damaging properties and cytotoxicity in human fibroblasts of tetrachlorohydroquinone, a pentachlorophenolmetabolite. Mutat Res, 1985, 145: 71-75
[10]
15 Dahlhaus M, Almstadt E, Henachke P, et al. Oxidative DNA lesions in V79 cells mediated by pentachlorophenol metabolites. Arch Toxicol,1996, 70: 457-460??
[11]
16 Ehrlich W. The effect of pentachlorophenol and its metabolite tetrachlorohydroquinone on cell growth and the induction of DNA damagein Chinese hamster ovary cells. Mutat Res, 1990, 244: 299-302??
[12]
17 Dahlhaus M, Almstadt E, Appel K E. The pentachlorophenol metabolite tetrachloro-p-hydroquinone induces the formation of 8-hydroxy-2-deoxyguanosine in liver DNA of male B6C3F1 mice. Toxicol Lett, 1994, 74: 265-274??
[13]
19 Jansson K, Jansson V. Induction of micronuclei in V79 Chinese hamster cells by tetrachlorohydroquinone, a metabolite of pentachlorophenol.Mutat Res, 1992, 279: 205-208??
[14]
21 Lin P H, Nakamura J, Yamaguchi S, et al. Induction of direct adducts, apurinic/apyrimidinic sites and oxidized bases in nuclear DNA ofhuman HeLa S3 tumor cells by tetrachlorohydroquinone. Carcinogenesis, 2001, 22: 635-639
[15]
22 Thorn G D, Ludwig R A. The Dithiocarbamates and Related Compounds. Amsterdam: Elsevier Publishing Co., 1962
[16]
23 Environmental Health Criteria. World Health Organization, Vammal, 1988
[17]
25 Pruett S B, Myers L P, Keil D E. Toxicology of metam sodium. J Toxicol Environ Health B Crit Rev, 2001, 4: 207-222
27 Anonymous. Quantities of Most Commonly Used Conventional Pesticides in U.S. Agricultural Crop Production. U.S. EnvironmentalProtection Agency,1999. www.epa.gov/oppbead1/95pestsales/Tables/Table8LJ.htm.
[20]
28 Tilton F, La Du J K, Tanguay R L. Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamatesodium metam (NaM). Aquat Toxicol, 2008, 90: 121-127??
[21]
36 Calviello G, Filippi G M, Toesca A, et al. Repeated exposure to pyrrolidine-dithiocarbamate induces peripheral nerve alterations in rats.Toxicol Lett, 2005, 158: 61-71??
[22]
37 Valentine H L, Amarnath K, Amarnath V, et al. Dietary copper enhances the peripheral myelinopathy produced by oral pyrrolidine dithiocarbamate.Toxicol Sci, 2006, 89: 485-494??
[23]
38 Chen S H, Liu S H, Liang Y C, et al. Death signaling pathway induced by pyrrolidine dithiocarbamate-Cu2+ complex in the cultured ratcortical astrocytes. Glia, 2000, 31: 249-261??
[24]
39 Kim C H, Kim J H, Xu J, et al. Pyrrolidine dithiocarbamate induces bovine cerebral endothelial cell death by increasing the intracellularzinc level. J Neurochem, 1999, 72: 1586-1592
[25]
40 Chung K C, Park J H, Kim C H, et al. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by thedifferential regulation of intracellular zinc and copper ion levels, NF-B, and MAP kinases. J Neurosci Res, 2000, 59: 117-125??
[26]
41 Koo D, Goldman L, Baron R. Irritant dermatitis among workers cleaning up a pesticide spill: California 1991. Am J Ind Med, 1995, 27:545-553??
[27]
42 Schultz T P, Nicholas D D. A brief overview of non-arsenical wood preservative systems. In: Goodell B, Nicholas D D, Schultz T P, eds.Wood Deterioration and Preservation: Advances in Our Changing World. ACS Symposium Series. Washington, DC: American ChemicalSociety, 2003. 420-432
[28]
43 Fields S. Caution-children at play: How dangerous is CCA? Environ Health Perspect, 2001, 109: A262-A269
[29]
44 Kluger J. Toxic playgrounds. Time Magazine, 2001,158: 48-49
[30]
51 Vermeulen L A, Reinecke A J, Reinecke S A. Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (mancozeb) forsublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf, 2001, 48: 183-189??
[31]
53 Cai L, Li X K, Song Y, et al. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem, 2005, 12: 2753-2763??
[32]
57 Zhu B Z, Chevion M. Copper-mediated toxicity of 2,4,5-trichlorophenol: Biphasic effect of neocuproine, a copper(I)-specific chelator.Arch Biochem Biophys, 2000, 80: 267-273
[33]
58 Zhu B Z, Chevion M. Mechanism of synergistic toxicity of pentachlorophenol and copper(II)-1,10-phenanthroline complexes: The formationof lipophilic ternary complexes. Chem-Biol Interaction, 2000, 129: 249-261
[34]
59 Zhu B Z. Lethal interaction and formation of lipophilic ternary complex between 2,4,5-trichlorophenol and Cu(II)-bis(1,10-phenanthroline)complex. Chem Res Toxicol, 2001, 14: 222-227
[35]
60 Levy S, Shechtman S, Zhu B Z, et al. Synergism between the toxicity of chlorophenols and iron complexes. Environ Toxicol Chem, 2007,26: 218-224??
[36]
2 Zhu B Z, Shan G Q. Potential mechanism for pentachlorophenol-induced carcinogenicity: A novel mechanism for metal-independentproduction of hydroxyl radicals. Chem Res Toxicol, 2009, 22: 969-977??
4 McConnell E E, Huff J E, Hejtmancik M, et al. Toxicology and carcinogenesis studies of two grades of pentachlorophenol in B6C3F1mice. Fundam Appl Toxicol, 1991, 17: 519-532??
[39]
9 Zhu B Z, Zhao H T, Kalyanaraman B, et al. Metal-independent production of hydroxyl radicals by chlorinated quinones and hydrogenperoxide: an ESR spin-trapping study. Free Radic Biol Med, 2002, 32: 465-473??
[40]
10 Zhu B Z, Kalyanaraman B, Jiang G. Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxideand halogenated quinones. Proc Natl Acad Sci USA, 2007, 104: 17575-17578??
[41]
18 Wang Y J, Ho Y S, Chu S W, et al. Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone,a toxic metabolite of pentachlorophenol. Chem Biol Interact, 1997, 105: 1-16
[42]
20 Dahlhaus M, Almstadt E, Henschke P, et al. Induction of 8-hydroxy-2-deoxyguanosine and single strand breaks in DNA of V79 cells bytetrachloro-p-hydroquinone. Mutation Res, 1995, 329: 29-36
[43]
24 Anonymous. Some carbamates, thiocarbamates, and carbazides. IARC Monogr, 1976, 12: 1-282
[44]
29 Tilton F, Tanguay R L. Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuingneuronal and muscular dysfunction. Toxicol Sci, 2008, 106: 103-112??
[45]
30 Haendel M A, Tilton F, Bailey G S, et al. Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci,2004, 81: 390-400??
[46]
31 Meco G, Bonifati V, Vanacore N, et al. Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate).Scand J Work Environ Health, 1994, 20: 301-305
[47]
32 Zhou Y, Shie F S, Piccardo P, et al. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: Relevance to Parkinson’sdisease. Neurosci, 2004, 128: 281-291??
[48]
33 Chou A P, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J BiolChem, 2008, 283: 34696-34703
[49]
34 Allain P, Krari N. Diethyldithiocarbamate and brain copper. Res Commun Chem Patho Pharmacol, 1993, 80: 105-112
[50]
35 Tonkin E G, Valentine H L, Milatovic D M, et al. N,N-diethyldithiocarbamate produces copper accumulation, lipid peroxidation, and myelininjury in rat peripheral nerve. Toxicol Sci, 2004, 81: 160-171??
[51]
45 Anonymous. American Wood Preservers’ Association Standards 2001. Cranbury, TX: American Wood Preserver’s Association, 2001??
[52]
46 Schultz T P, Nicholas D D. Development of environmentally-benign wood preservatives based on the combination of organic biocideswith antioxidants and metal chelators. Phytochemistry, 2002, 61: 555-560??
[53]
47 Bush A I. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis, 2008, 15: 223-240
[54]
48 Ozcelik D, Ozaras R, Gurel Z, et al. Copper-mediated oxidative stress in rat liver. Biol Trace Elem Res, 2004, 96: 209-216
[55]
49 Pourahmad J, O’Brien P J. A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology, 2000, 143: 263-273??
[56]
50 Rimmer D A, Johnson P D, Bradley S D. Determination of organo-zinc based fungicides in timber treatments employing gas chromatographicanalysis with mass selective detection and/or inductively coupled plasma atomic emission spectroscopy. J Chromatogr A, 2001,928: 209-216??
[57]
52 Nebbia C, Dacasto M, Soffietti M G, et al. Inhibition of hepatic xenobiotic metabolism and of glutathione-dependent enzyme activities byzinc ethylene-bis-dithiocarbamate in the rabbit. Pharmacol Toxicol, 1993, 73: 233-239??
[58]
54 Grunnet K S, Dahll?f I. Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ Toxicol Chem, 2005, 24:3001-3006??
[59]
55 Fosmire G J. Zinc toxicity. Am J Clin Nutr, 1990, 51: 225-227
[60]
56 Zhu B Z, Shechtman S, Chevion M. Synergistic cytotoxicity between pentachlorophenol and copper in a bacterial model. Chemosphere,2001, 45: 463-470??