全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

有机农药和含铜、锌等无机农药协同毒性作用机理

DOI: 10.1360/972011-507, PP. 2111-2118

Keywords: 协同毒性,亲脂性络合物,五氯酚,威百亩,含铜,锌无机农药

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前我们对环境污染物毒性的认识主要来源于对某单一化学物质在相对高浓度情况下的研究.然而,人们在其一生中很少只暴露于单独某一种化学物质,而是同时暴露于多种低浓度的化学物质.从公众健康的角度讲,大家主要担心的是当两种和两种以上化学物质相互作用时,两者能否产生不同寻常的协同毒性.五氯酚、威百亩等有机农药和含铜、锌等无机农药皆被用作通用杀虫剂或木材保护剂,两者在许多农田和木材保护处理场所附近的土壤和水体以及在普通人群的体液和组织中,均发现同时共存.我们最近的研究表明,这两类物质共存时可以对大肠杆菌产生协同毒性效应,其协同毒性作用机制可能是由于两者形成了亲脂性络合物,促进了细胞对金属离子的吸收和累积.此类有机和无机污染物之间的相互作用以及亲脂性络合物形成而导致的协同毒性作用,可能是普遍存在于有机和无机污染物之间的一种共同毒性作用机制.这一假设是否成立,尚有待进一步的实验和理论研究.

References

[1]  1 IARC. IARC monographs on the evaluation of carcinogenic risks to humans: Occupational exposures in insecticide application, and somepesticides. Pentachlorophenol, 1991, 53: 371-402
[2]  5 Chhabra R S, Maronpot R M, Bucher J R, et al. Toxicology and carcinogenesis studies of pentachlorophenol in rats. Toxicol Sci, 1999, 48:14-20??
[3]  6 Renner G, Mucke W. Transformations of pentachlorophenol. Part I: Metabolism in animals and man. Toxicol Environ Chem, 1986, 11:9-29??
[4]  7 Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Oxford : Oxford University Press, 2007
[5]  8 Zhu B Z, Kitrossky N, Chevion M. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide:A metal-independent organic Fenton reaction. Biochem Biophys Res Commun, 2000, 270: 942-946??
[6]  11 Jia S, Zhu B Z, Guo L H. Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemicalDNA sensor. Anal Bioanal Chem, 2010, 397: 2395-2400??
[7]  12 Zhu B Z, Zhao H T, Kalyanaraman B, et al. Mechanism of metal-independent decomposition of organic hydroperoxides and formation ofalkoxyl radicals by halogenated quinones. Proc Natl Acad Sci USA, 2007, 104: 3698-3702??
[8]  13 Zhu B Z, Shan G Q, Huang C H, et al. Metal-independent decomposition of hydroperoxides by halogenated quinones: Detection andidentification of a quinone ketoxy radical. Proc Natl Acad Sci USA, 2009, 106: 11466-11471??
[9]  14 Witte I, Juhl U, Butte W. DNA-damaging properties and cytotoxicity in human fibroblasts of tetrachlorohydroquinone, a pentachlorophenolmetabolite. Mutat Res, 1985, 145: 71-75
[10]  15 Dahlhaus M, Almstadt E, Henachke P, et al. Oxidative DNA lesions in V79 cells mediated by pentachlorophenol metabolites. Arch Toxicol,1996, 70: 457-460??
[11]  16 Ehrlich W. The effect of pentachlorophenol and its metabolite tetrachlorohydroquinone on cell growth and the induction of DNA damagein Chinese hamster ovary cells. Mutat Res, 1990, 244: 299-302??
[12]  17 Dahlhaus M, Almstadt E, Appel K E. The pentachlorophenol metabolite tetrachloro-p-hydroquinone induces the formation of 8-hydroxy-2-deoxyguanosine in liver DNA of male B6C3F1 mice. Toxicol Lett, 1994, 74: 265-274??
[13]  19 Jansson K, Jansson V. Induction of micronuclei in V79 Chinese hamster cells by tetrachlorohydroquinone, a metabolite of pentachlorophenol.Mutat Res, 1992, 279: 205-208??
[14]  21 Lin P H, Nakamura J, Yamaguchi S, et al. Induction of direct adducts, apurinic/apyrimidinic sites and oxidized bases in nuclear DNA ofhuman HeLa S3 tumor cells by tetrachlorohydroquinone. Carcinogenesis, 2001, 22: 635-639
[15]  22 Thorn G D, Ludwig R A. The Dithiocarbamates and Related Compounds. Amsterdam: Elsevier Publishing Co., 1962
[16]  23 Environmental Health Criteria. World Health Organization, Vammal, 1988
[17]  25 Pruett S B, Myers L P, Keil D E. Toxicology of metam sodium. J Toxicol Environ Health B Crit Rev, 2001, 4: 207-222
[18]  26 Anonymous. Methyl Isothiocyanate (MITC)—Wood Preservative. U.S. Environmental Protection Agency, 1998. www.epa.gov/pesticides/citizens/methylf.htm.??
[19]  27 Anonymous. Quantities of Most Commonly Used Conventional Pesticides in U.S. Agricultural Crop Production. U.S. EnvironmentalProtection Agency,1999. www.epa.gov/oppbead1/95pestsales/Tables/Table8LJ.htm.
[20]  28 Tilton F, La Du J K, Tanguay R L. Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamatesodium metam (NaM). Aquat Toxicol, 2008, 90: 121-127??
[21]  36 Calviello G, Filippi G M, Toesca A, et al. Repeated exposure to pyrrolidine-dithiocarbamate induces peripheral nerve alterations in rats.Toxicol Lett, 2005, 158: 61-71??
[22]  37 Valentine H L, Amarnath K, Amarnath V, et al. Dietary copper enhances the peripheral myelinopathy produced by oral pyrrolidine dithiocarbamate.Toxicol Sci, 2006, 89: 485-494??
[23]  38 Chen S H, Liu S H, Liang Y C, et al. Death signaling pathway induced by pyrrolidine dithiocarbamate-Cu2+ complex in the cultured ratcortical astrocytes. Glia, 2000, 31: 249-261??
[24]  39 Kim C H, Kim J H, Xu J, et al. Pyrrolidine dithiocarbamate induces bovine cerebral endothelial cell death by increasing the intracellularzinc level. J Neurochem, 1999, 72: 1586-1592
[25]  40 Chung K C, Park J H, Kim C H, et al. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by thedifferential regulation of intracellular zinc and copper ion levels, NF-B, and MAP kinases. J Neurosci Res, 2000, 59: 117-125??
[26]  41 Koo D, Goldman L, Baron R. Irritant dermatitis among workers cleaning up a pesticide spill: California 1991. Am J Ind Med, 1995, 27:545-553??
[27]  42 Schultz T P, Nicholas D D. A brief overview of non-arsenical wood preservative systems. In: Goodell B, Nicholas D D, Schultz T P, eds.Wood Deterioration and Preservation: Advances in Our Changing World. ACS Symposium Series. Washington, DC: American ChemicalSociety, 2003. 420-432
[28]  43 Fields S. Caution-children at play: How dangerous is CCA? Environ Health Perspect, 2001, 109: A262-A269
[29]  44 Kluger J. Toxic playgrounds. Time Magazine, 2001,158: 48-49
[30]  51 Vermeulen L A, Reinecke A J, Reinecke S A. Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (mancozeb) forsublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf, 2001, 48: 183-189??
[31]  53 Cai L, Li X K, Song Y, et al. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem, 2005, 12: 2753-2763??
[32]  57 Zhu B Z, Chevion M. Copper-mediated toxicity of 2,4,5-trichlorophenol: Biphasic effect of neocuproine, a copper(I)-specific chelator.Arch Biochem Biophys, 2000, 80: 267-273
[33]  58 Zhu B Z, Chevion M. Mechanism of synergistic toxicity of pentachlorophenol and copper(II)-1,10-phenanthroline complexes: The formationof lipophilic ternary complexes. Chem-Biol Interaction, 2000, 129: 249-261
[34]  59 Zhu B Z. Lethal interaction and formation of lipophilic ternary complex between 2,4,5-trichlorophenol and Cu(II)-bis(1,10-phenanthroline)complex. Chem Res Toxicol, 2001, 14: 222-227
[35]  60 Levy S, Shechtman S, Zhu B Z, et al. Synergism between the toxicity of chlorophenols and iron complexes. Environ Toxicol Chem, 2007,26: 218-224??
[36]  2 Zhu B Z, Shan G Q. Potential mechanism for pentachlorophenol-induced carcinogenicity: A novel mechanism for metal-independentproduction of hydroxyl radicals. Chem Res Toxicol, 2009, 22: 969-977??
[37]  3 朱本占. 新型羟基自由基产生分子机理的研究: 五氯酚的可能致癌机制. 科学通报, 2009, 54: 1673-1680
[38]  4 McConnell E E, Huff J E, Hejtmancik M, et al. Toxicology and carcinogenesis studies of two grades of pentachlorophenol in B6C3F1mice. Fundam Appl Toxicol, 1991, 17: 519-532??
[39]  9 Zhu B Z, Zhao H T, Kalyanaraman B, et al. Metal-independent production of hydroxyl radicals by chlorinated quinones and hydrogenperoxide: an ESR spin-trapping study. Free Radic Biol Med, 2002, 32: 465-473??
[40]  10 Zhu B Z, Kalyanaraman B, Jiang G. Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxideand halogenated quinones. Proc Natl Acad Sci USA, 2007, 104: 17575-17578??
[41]  18 Wang Y J, Ho Y S, Chu S W, et al. Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone,a toxic metabolite of pentachlorophenol. Chem Biol Interact, 1997, 105: 1-16
[42]  20 Dahlhaus M, Almstadt E, Henschke P, et al. Induction of 8-hydroxy-2-deoxyguanosine and single strand breaks in DNA of V79 cells bytetrachloro-p-hydroquinone. Mutation Res, 1995, 329: 29-36
[43]  24 Anonymous. Some carbamates, thiocarbamates, and carbazides. IARC Monogr, 1976, 12: 1-282
[44]  29 Tilton F, Tanguay R L. Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuingneuronal and muscular dysfunction. Toxicol Sci, 2008, 106: 103-112??
[45]  30 Haendel M A, Tilton F, Bailey G S, et al. Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci,2004, 81: 390-400??
[46]  31 Meco G, Bonifati V, Vanacore N, et al. Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate).Scand J Work Environ Health, 1994, 20: 301-305
[47]  32 Zhou Y, Shie F S, Piccardo P, et al. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: Relevance to Parkinson’sdisease. Neurosci, 2004, 128: 281-291??
[48]  33 Chou A P, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J BiolChem, 2008, 283: 34696-34703
[49]  34 Allain P, Krari N. Diethyldithiocarbamate and brain copper. Res Commun Chem Patho Pharmacol, 1993, 80: 105-112
[50]  35 Tonkin E G, Valentine H L, Milatovic D M, et al. N,N-diethyldithiocarbamate produces copper accumulation, lipid peroxidation, and myelininjury in rat peripheral nerve. Toxicol Sci, 2004, 81: 160-171??
[51]  45 Anonymous. American Wood Preservers’ Association Standards 2001. Cranbury, TX: American Wood Preserver’s Association, 2001??
[52]  46 Schultz T P, Nicholas D D. Development of environmentally-benign wood preservatives based on the combination of organic biocideswith antioxidants and metal chelators. Phytochemistry, 2002, 61: 555-560??
[53]  47 Bush A I. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis, 2008, 15: 223-240
[54]  48 Ozcelik D, Ozaras R, Gurel Z, et al. Copper-mediated oxidative stress in rat liver. Biol Trace Elem Res, 2004, 96: 209-216
[55]  49 Pourahmad J, O’Brien P J. A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology, 2000, 143: 263-273??
[56]  50 Rimmer D A, Johnson P D, Bradley S D. Determination of organo-zinc based fungicides in timber treatments employing gas chromatographicanalysis with mass selective detection and/or inductively coupled plasma atomic emission spectroscopy. J Chromatogr A, 2001,928: 209-216??
[57]  52 Nebbia C, Dacasto M, Soffietti M G, et al. Inhibition of hepatic xenobiotic metabolism and of glutathione-dependent enzyme activities byzinc ethylene-bis-dithiocarbamate in the rabbit. Pharmacol Toxicol, 1993, 73: 233-239??
[58]  54 Grunnet K S, Dahll?f I. Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ Toxicol Chem, 2005, 24:3001-3006??
[59]  55 Fosmire G J. Zinc toxicity. Am J Clin Nutr, 1990, 51: 225-227
[60]  56 Zhu B Z, Shechtman S, Chevion M. Synergistic cytotoxicity between pentachlorophenol and copper in a bacterial model. Chemosphere,2001, 45: 463-470??
[61]  ??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133