全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

实时功能磁共振成像及其应用

DOI: 10.1360/972013-354, PP. 195-209

Keywords: 功能磁共振实时成像,神经反馈,脑机接口,自主调节

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时功能磁共振成像通过技术手段将数据分析所需的时间缩短到可与数据采集时间相比拟的程度,从而能在实验进程中将大脑皮层活动情况即刻反馈给受试者,构成一个闭合的神经反馈回路.近年来随着数据采集技术与图像重建算法的改进以及计算机运算能力的提高,实时功能磁共振成像技术日趋成熟并在诸多方面得到应用.凭借实时功能磁共振成像提供的神经反馈,受试者能够自主调节相关脑区的激活水平,与被调节脑区相关的认知过程或行为也会随之变化,这为认知神经科学提供了一种新的研究范式.实时功能磁共振成像还可以用作具备优良空间分辨率和全脑覆盖性的脑机接口,通过对大脑皮层激活模式的分析对脑状态进行判断和分类,从而实现仅依赖大脑活动的交互方式.另外,实时功能磁共振成像在临床上的潜在应用也得到了广泛关注,它为神经系统或精神类疾病的治疗与康复提供了新的途径,患者有望通过神经反馈调控异常的大脑激活状况从而缓解相应症状.本文旨在对实时功能磁共振成像的概念、关键技术及相关应用进行详细的介绍,并对其面临的问题和发展的前景进行讨论.

References

[1]  1 Belliveau J W, Kennedy D N, McKinstry R C, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991, 254: 716-719
[2]  6 Yoo S S, Guttmann C, Zhao L, et al. Real-time adaptive functional MRI. NeuroImage, 1999, 10: 596-606
[3]  7 Posse S, Fitzgerald D, Gao K, et al. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage, 2003, 18: 760-768
[4]  11 deCharms R C, Maeda F, Glover G H, et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA, 2005, 102: 18626-18631
[5]  12 Yang S, Ross T J, Zhang Y, et al. Head motion suppression using real-time feedback of motion information and its effects on task performance in fMRI. NeuroImage, 2005, 27: 153-162
[6]  13 Hamilton J P, Glover G H, Hsu J, et al. Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp, 2011, 32: 22-31
[7]  14 Posse S, Wiese S, Gembris D, et al. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magnet Reson Med, 1999, 42: 87-97
[8]  15 Weiskopf N, Klose U, Birbaumer N, et al. Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. NeuroImage, 2005, 24: 1068-1079
[9]  25 LaConte S M, Peltier S J, Hu X. Real-time fMRI using brain-state classification. Hum Brain Mapp, 2007, 28: 1033-1044
[10]  26 Hollmann M, Rieger J W, Baecke S, et al. Predicting decisions in human social interactions using real-time fMRI and pattern classification. PLoS One, 2011, 6: e25304
[11]  32 Rota G, Sitaram R, Veit R, et al. Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Human Brain Mapp, 2009, 30: 1605-1614
[12]  34 McCaig R G, Dixon M, Keramatian K, et al. Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage, 2011, 55: 1298-1305
[13]  35 Weiskopf N, Mathiak K, Bock S W, et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE T Bio-med Eng, 2004, 51: 966-970
[14]  38 Linden W, Moseley J V. The efficacy of behavioral treatments for hypertension. Appl Psychophysiol Biofeedback, 2006, 31: 51-63
[15]  41 Subramanian L, Hindle J V, Johnston S, et al. Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson's disease. J Neurosci, 2011, 31: 16309-16317
[16]  42 Linden D E J, Habes I, Johnston S J, et al. Real-time self-regulation of emotion networks in patients with depression. PLoS One, 2012, 7: e38115
[17]  43 Sitaram R, Veit R, Stevens B, et al. Acquired control of ventral premotor cortex activity by feedback training: An exploratory real-time fMRI and TMS study. Neurorehab Neural Repair, 2012, 26: 256-265
[18]  44 Li X, Hartwell K J, Borckardt J, et al. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: A preliminary real-time fMRI study. Addict Biol, 2013, 18: 739-748
[19]  45 Ruiz S, Lee S, Soekadar S R, et al. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp, 2013, 334: 200-212
[20]  2 Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA, 1992, 89: 5675-5679
[21]  3 Bandettini P A, Wong E C, Hinks R S, et al. Time course EPI of human brain function during task activation. Magnet Reson Med, 1992, 25: 390-397
[22]  4 Ogawa S, Tank D W, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA, 1992, 89: 5951-5955
[23]  5 Cox R W, Jesmanowicz A, Hyde J S. Real-time functional magnetic resonance imaging. Magnet Reson Med, 1995, 33: 230-236
[24]  8 Weiskopf N, Veit R, Erb M, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. NeuroImage, 2003, 19: 577-586
[25]  9 deCharms R C, Christoff K, Glover G H, et al. Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 2004, 21: 436-443
[26]  10 Yoo S S, Fairneny T, Chen N, et al. Brain-computer interface using fMRI: Spatial navigation by thoughts. Neuroreport, 2004, 15: 1591-1595
[27]  16 Posse S, Ackley E, Mutihac R, et al. Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging. NeuroImage, 2012, 61: 115-130
[28]  17 Hollmann M, Monch T, Mulla-Osman S, et al. A new concept of a unified parameter management, experiment control, and data analysis in fMRI: Application to real-time fMRI at 3 T and 7 T. J Neurosci Meth, 2008, 175: 154-162
[29]  18 Bandettini P A, Jesmanowicz A, Wong E C, et al. Processing strategies for time-course data sets in functional MRI of the human brain. Magnet Reson Med, 1993, 30: 161-173
[30]  19 Gembris D, Taylor J G, Schor S, et al. Functional magnetic resonance imaging in real time (FIRE): Sliding-window correlation analysis and reference-vector optimization. Magnet Reson Med, 2000, 43: 259-268
[31]  20 Bagarinao E, Nakai T, Tanaka Y. Real-time functional MRI: Development and emerging applications. Magnet Reson Med Sci, 2006, 5: 157-165
[32]  21 Cox R W, Jesmanowicz A. Real-time 3D image registration for functional MRI. Magnet Reson Med, 1999, 42: 1014-1018
[33]  22 Mathiak K, Posse S. Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magnet Reson Med, 2001, 45: 167-171
[34]  23 Posse S, Fitzgerald D, Gao K, et al. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage, 2003, 18: 760-768
[35]  24 Bagarinao E, Matsuo K, Nakai T, et al. Estimation of general linear model coefficients for real-time application. NeuroImage, 2003, 19: 422-429
[36]  27 Esposito F, Seifritz E, Formisano E, et al. Real-time independent component analysis of fMRI time-series. NeuroImage, 2003, 20: 2209-2224
[37]  28 Weiskopf N. Real-time fMRI and its application to neurofeedback. NeuroImage, 2012, 62: 682-692
[38]  29 Caria A, Veit R, Sitaram R, et al. Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 2007, 35: 1238-1346
[39]  30 Weiskopf N, Scharnowski F, Veit R, et al. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol-Paris, 2004, 98: 357-373
[40]  31 Yoo S S, Jolesz F A. Functional MRI for neurofeedback: Feasibility study on a hand motor task. Neuroreport, 2002, 13: 1377-1381
[41]  33 Caria A, Sitaram R, Veit R, et al. Volitional control of anterior insula activity modulates the response to aversive stimuli: A real-time functional magnetic resonance imaging study. Biol Psychiat, 2010, 68: 425-432
[42]  36 Haller S, Birbaumer N, Veit R. Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol, 2010, 20: 696-703
[43]  37 Johnston S J, Boehm S G, Healy D, et al. Neurofeedback: A promising tool for the self-regulation of emotion networks. NeuroImage, 2010, 49: 1066-1072
[44]  39 LaConte S M. Decoding fMRI Brain states in real-time. NeuroImage, 2011, 56: 440-454
[45]  40 Sorger B, Reithler J, Dahmen B. A Real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol, 2012, 22: 1333-1338
[46]  46 Voyvodic J. Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. NeruoImage, 1999, 10: 91-106
[47]  47 Posse S, Binkofski F, Schneider F, et al. A new approach to measure single-event related brain activity using real-time fMRI: Feasibility of sensory, motor, and higher cognitive tasks. Hum Brain Mapp, 2001, 12: 25-41
[48]  48 Hernandez-Garcia L, Jahanian H, Greenwald M K, et al. Real-time functional MRI using pseudo-continuous arterial spin labeling. Magnet Reson Med, 2011, 65: 1570-1577

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133