全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

DNA纳米自组装的研究进展及应用

DOI: 10.1360/972013-307, PP. 146-157

Keywords: DNA纳米技术,DNA纳米自组装,DNA折纸术,DNA计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA纳米技术是一种自下而上的分子自组装模式,由分子构造为起点基于核酸分子的物理和化学性质自发地形成稳定结构,遵循严格的核酸碱基配对原则,使得DNA被用作构建结构的材料基元而不是在活细胞中那样作为遗传信息的载体.通过合理地设计碱基链来达成精密控制的纳米级复杂结构的目的,研究人员在这个领域已经建立起诸多二维、三维的复杂纳米结构以及各种具有不同功能的分子机器,比如DNA计算机.本文总结了近年来DNA纳米自组装方面取得的最新进展,同时介绍DNA纳米自组装的几种不同组装方法,并对其相关应用进行了展望.

References

[1]  2 Fu T J, Seeman N C. DNA double-crossover molecules. Biochemistry, 1993, 32: 3211-3220
[2]  3 Labean T H, Yan H, Kopatsch J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc, 2000, 122: 1848-1860
[3]  5 Mathieu F, Liao S P, Kopatscht J, et al. Six-helix bundles designed from DNA. Nano Lett, 2005, 5: 661-665
[4]  9 He Y, Tian Y, Ribbe A E, et al. Highly connected two-dimensional crystals of DNA six-point-stars. J Am Chem Soc, 2006, 128: 15978-15979
[5]  10 Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci USA, 2008, 105: 10665-10669
[6]  11 Liu H P, He Y, Ribbe A E, et al. Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules, 2005, 6: 2943-2945
[7]  12 Liu H P, Chen Y, He Y, et al. Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angew Chem Int Ed, 2006, 45: 1942-1945
[8]  13 Yin P, Hariadi R F, Sahu S, et al. Programming DNA tube circumferences. Science, 2008, 321: 824-826
[9]  15 Ke Y, Ong L L, Shih W M, et al. Three-dimensional structures self-assembled from DNA bricks. Science, 2012, 338: 1177-1183
[10]  16 Adleman L M. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021-1024
[11]  17 Yan H, Labean T H, Feng L P, et al. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA, 2003, 100: 8103-8108
[12]  24 Seeman N C. Nucleic-acid junctions and lattices. J Theoret Biol, 1982, 99: 237-247
[13]  25 Labean T H. Nanotechnology another dimension for DNA art. Nature, 2009, 459: 331-332
[14]  26 Dietz H, Douglas S M, Shih W M. Folding DNA into twisted and curved nanoscale shapes. Science, 2009, 325: 725-730
[15]  28 Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332: 342-346
[16]  29 Mao C D, Sun W Q, Shen Z Y, et al. A nanomechanical device based on the B-Z transition of DNA. Nature, 1999, 397: 144-146
[17]  30 Yurke B, Turberfield A J, Mills A P, et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406: 605-608
[18]  31 Yan H, Zhang X P, Shen Z Y, et al. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415: 62-65
[19]  32 Goodman R P, Heilemann M, Doose S, et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol, 2008, 3: 93-96
[20]  33 Park S H, Pistol C, Ahn S J, et al. Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed, 2006, 45: 735-739
[21]  34 Douglas S M, Bachelet I, Church G M. A Logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335: 831-834
[22]  37 Tian Y, He Y, Chen Y, et al. Molecular devices—A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed, 2005, 44: 4355-4358
[23]  38 Bath J, Green S J, Turberfield A J. A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed, 2005, 44: 4358-4361
[24]  43 Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science, 2011, 332: 1196-1201
[25]  44 Yin P, Choi H M T, Calvert C R, et al. Programming biomolecular self-assembly pathways. Nature, 2008, 451: 318-322
[26]  45 Wang Z G, Elbaz J, Remacle F, et al. All-DNA finite-state automata with finite memory. Proc Natl Acad Sci USA, 2010, 107: 21996-22001
[27]  48 Gu H, Chao J, Xiao S J, et al. A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465: 202-205
[28]  49 Li H, Carter J D, Labean T H. Nanofabrication by DNA self-assembly. Mater Today, 2009, 12: 24-32
[29]  50 Lund K, Liu Y, Lindsay S, et al. Self-assembling a molecular pegboard. J Am Chem Soc, 2005, 127: 17606-17607
[30]  53 Park S H, Yin P, Liu Y, et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett, 2005, 5: 729-733
[31]  54 Liu Y, Lin C X, Li H Y, et al. Protein nanoarrays—Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed, 2005, 44: 4333-4338
[32]  60 Zhang J P, Liu Y, Ke Y G, et al. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett, 2006, 6: 248-251
[33]  62 Tikhomirov G, Hoogland S, Lee P E, et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol, 2011, 6: 485-490
[34]  63 Chen J H, Seeman N C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350: 631-633
[35]  64 Zhang Y W, Seeman N C. Construction of a DNA-truncated octahedron. J Am Chem Soc, 1994, 116: 1661-1669
[36]  65 Scheffler M, Dorenbeck A, Jordan S, et al. Self-assembly of trisoligonucleotidyls: The case for nano-acetylene and nano-cyclobutadiene. Angew Chem Int Ed, 1999, 38: 3311-3315
[37]  66 Goodman R P, Schaap I A T, Tardin C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310: 1661-1665
[38]  67 Pei H, Lu N, Wen Y, et al. A DNA Nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater, 2010, 22: 4754-4758
[39]  68 Pei H, Wan Y, Li J, et al. Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. Chem Commun, 2011, 47: 6254-6256
[40]  69 Ge Z L, Pei H, Wang L H, et al. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci China Chem, 2011, 54: 1273-1276
[41]  70 Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem Rev, 1999, 99: 1849-1862
[42]  71 Gothelf K V, Labean T H. DNA-programmed assembly of nanostructures. Org Biomol Chem, 2005, 3: 4023-4037
[43]  72 Silverman A P, Kool E T. Detecting RNA and DNA with templated chemical reactions. Chem Rev, 2006, 106: 3775-3789
[44]  73 Li X Y, Liu D R. DNA-templated organic synthesis: Nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed, 2004, 43: 4848-4870
[45]  74 Gartner Z J, Tse B N, Grubina R, et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science, 2004, 305: 1601-1605
[46]  1 Kallenbach N R, Ma R I, Seeman N C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 1983, 305: 829-831
[47]  4 Reishus D, Shaw B, Brun Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J Am Chem Soc, 2005, 127: 17590-17591
[48]  6 Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301: 1882-1884
[49]  7 Liu D, Wang M S, Deng Z X, et al. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc, 2004, 126: 2324-2325
[50]  8 He Y, Chen Y, Liu H P, et al. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc, 2005, 127: 12202-12203
[51]  14 Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485: 623-626
[52]  18 Shih W M, Quispe J D, Joyce G F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 2004, 427: 618-621
[53]  19 Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297-302
[54]  20 Qian L, Wang Y, Zhang Z, et al. Analogic China map constructed by DNA. Chin Sci Bull, 2006, 51: 2973-2976
[55]  21 Andersen E S, Dong M, Nielsen M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459: 73-75
[56]  22 Ke Y, Sharma J, Liu M, et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett, 2009, 9: 2445-2447
[57]  23 Douglas S M, Chou J J, Shih W M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA, 2007, 104: 6644-6648
[58]  27 Ke Y, Douglas S M, Liu M, et al. Multilayer DNA origami packed on a square lattice. J Am Chem Soc, 2009, 131: 15903-15908
[59]  35 Shin J S, Pierce N A. A synthetic DNA walker for molecular transport. J Am Chem Soc, 2004, 126: 10834-10835
[60]  36 Sherman W B, Seeman N C. A precisely controlled DNA biped walking device. Nano Lett, 2004, 4: 1203-1207
[61]  39 Lund K, Manzo A J, Dabby N, et al. Molecular robots guided by prescriptive landscapes. Nature, 2010, 465: 206-210
[62]  40 He Y, Liu D R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol, 2010, 5: 778-782
[63]  41 Zhang D Y, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem, 2011, 3: 103-113
[64]  42 Seelig G, Soloveichik D, Zhang D Y, et al. Enzyme-free nucleic acid logic circuits. Science, 2006, 314: 1585-1588
[65]  46 Wang Z G, Elbaz J, Willner I. A dynamically programmed DNA transporter. Angew Chem Int Ed, 2012, 51: 4322-4326
[66]  47 Wickham S F J, Bath J, Katsuda Y, et al. A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol, 2012, 7: 169-173
[67]  51 Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science, 2008, 319: 180-183
[68]  52 Ke Y, Nangreave J, Yan H, et al. Developing DNA tiles for oligonucleotide hybridization assay with higher accuracy and efficiency. Chem Commun, 2008, 43: 5622-5624
[69]  55 Chhabra R, Sharma J, Ke Y, et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem Soc, 2007, 129: 10304-10305
[70]  56 Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol, 2008, 3: 418-422
[71]  57 Fu J, Liu M, Liu Y, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc, 2012, 134: 5516-5519
[72]  58 Le J D, Pinto Y, Seeman N C, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett, 2004, 4: 2343-2347
[73]  59 Pinto Y Y, Le J D, Seeman N C, et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett, 2005, 5: 2399-2402
[74]  61 Sharma J, Chhabra R, Andersen C S, et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc, 2008, 130: 7820-7821
[75]  75 Kanan M W, Rozenman M M, Sakurai K, et al. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature, 2004, 431: 545-549
[76]  76 Chen Y, Mao C. Reprogramming DNA-directed reactions on the basis of a DNA conformational change. J Am Chem Soc, 2004, 126: 13240-13241

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133