2 Fu T J, Seeman N C. DNA double-crossover molecules. Biochemistry, 1993, 32: 3211-3220
[2]
3 Labean T H, Yan H, Kopatsch J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc, 2000, 122: 1848-1860
[3]
5 Mathieu F, Liao S P, Kopatscht J, et al. Six-helix bundles designed from DNA. Nano Lett, 2005, 5: 661-665
[4]
9 He Y, Tian Y, Ribbe A E, et al. Highly connected two-dimensional crystals of DNA six-point-stars. J Am Chem Soc, 2006, 128: 15978-15979
[5]
10 Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci USA, 2008, 105: 10665-10669
[6]
11 Liu H P, He Y, Ribbe A E, et al. Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules, 2005, 6: 2943-2945
[7]
12 Liu H P, Chen Y, He Y, et al. Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angew Chem Int Ed, 2006, 45: 1942-1945
[8]
13 Yin P, Hariadi R F, Sahu S, et al. Programming DNA tube circumferences. Science, 2008, 321: 824-826
[9]
15 Ke Y, Ong L L, Shih W M, et al. Three-dimensional structures self-assembled from DNA bricks. Science, 2012, 338: 1177-1183
[10]
16 Adleman L M. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021-1024
[11]
17 Yan H, Labean T H, Feng L P, et al. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA, 2003, 100: 8103-8108
[12]
24 Seeman N C. Nucleic-acid junctions and lattices. J Theoret Biol, 1982, 99: 237-247
[13]
25 Labean T H. Nanotechnology another dimension for DNA art. Nature, 2009, 459: 331-332
[14]
26 Dietz H, Douglas S M, Shih W M. Folding DNA into twisted and curved nanoscale shapes. Science, 2009, 325: 725-730
[15]
28 Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332: 342-346
[16]
29 Mao C D, Sun W Q, Shen Z Y, et al. A nanomechanical device based on the B-Z transition of DNA. Nature, 1999, 397: 144-146
[17]
30 Yurke B, Turberfield A J, Mills A P, et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406: 605-608
[18]
31 Yan H, Zhang X P, Shen Z Y, et al. A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415: 62-65
[19]
32 Goodman R P, Heilemann M, Doose S, et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol, 2008, 3: 93-96
[20]
33 Park S H, Pistol C, Ahn S J, et al. Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed, 2006, 45: 735-739
[21]
34 Douglas S M, Bachelet I, Church G M. A Logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335: 831-834
[22]
37 Tian Y, He Y, Chen Y, et al. Molecular devices—A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed, 2005, 44: 4355-4358
[23]
38 Bath J, Green S J, Turberfield A J. A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed, 2005, 44: 4358-4361
[24]
43 Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science, 2011, 332: 1196-1201
[25]
44 Yin P, Choi H M T, Calvert C R, et al. Programming biomolecular self-assembly pathways. Nature, 2008, 451: 318-322
[26]
45 Wang Z G, Elbaz J, Remacle F, et al. All-DNA finite-state automata with finite memory. Proc Natl Acad Sci USA, 2010, 107: 21996-22001
[27]
48 Gu H, Chao J, Xiao S J, et al. A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465: 202-205
[28]
49 Li H, Carter J D, Labean T H. Nanofabrication by DNA self-assembly. Mater Today, 2009, 12: 24-32
[29]
50 Lund K, Liu Y, Lindsay S, et al. Self-assembling a molecular pegboard. J Am Chem Soc, 2005, 127: 17606-17607
[30]
53 Park S H, Yin P, Liu Y, et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett, 2005, 5: 729-733
[31]
54 Liu Y, Lin C X, Li H Y, et al. Protein nanoarrays—Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed, 2005, 44: 4333-4338
[32]
60 Zhang J P, Liu Y, Ke Y G, et al. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett, 2006, 6: 248-251
[33]
62 Tikhomirov G, Hoogland S, Lee P E, et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol, 2011, 6: 485-490
[34]
63 Chen J H, Seeman N C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350: 631-633
[35]
64 Zhang Y W, Seeman N C. Construction of a DNA-truncated octahedron. J Am Chem Soc, 1994, 116: 1661-1669
[36]
65 Scheffler M, Dorenbeck A, Jordan S, et al. Self-assembly of trisoligonucleotidyls: The case for nano-acetylene and nano-cyclobutadiene. Angew Chem Int Ed, 1999, 38: 3311-3315
[37]
66 Goodman R P, Schaap I A T, Tardin C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310: 1661-1665
[38]
67 Pei H, Lu N, Wen Y, et al. A DNA Nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater, 2010, 22: 4754-4758
[39]
68 Pei H, Wan Y, Li J, et al. Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. Chem Commun, 2011, 47: 6254-6256
[40]
69 Ge Z L, Pei H, Wang L H, et al. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci China Chem, 2011, 54: 1273-1276
[41]
70 Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem Rev, 1999, 99: 1849-1862
[42]
71 Gothelf K V, Labean T H. DNA-programmed assembly of nanostructures. Org Biomol Chem, 2005, 3: 4023-4037
[43]
72 Silverman A P, Kool E T. Detecting RNA and DNA with templated chemical reactions. Chem Rev, 2006, 106: 3775-3789
[44]
73 Li X Y, Liu D R. DNA-templated organic synthesis: Nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed, 2004, 43: 4848-4870
[45]
74 Gartner Z J, Tse B N, Grubina R, et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science, 2004, 305: 1601-1605
[46]
1 Kallenbach N R, Ma R I, Seeman N C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 1983, 305: 829-831
[47]
4 Reishus D, Shaw B, Brun Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J Am Chem Soc, 2005, 127: 17590-17591
[48]
6 Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301: 1882-1884
[49]
7 Liu D, Wang M S, Deng Z X, et al. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc, 2004, 126: 2324-2325
[50]
8 He Y, Chen Y, Liu H P, et al. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc, 2005, 127: 12202-12203
[51]
14 Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485: 623-626
[52]
18 Shih W M, Quispe J D, Joyce G F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 2004, 427: 618-621
[53]
19 Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297-302
[54]
20 Qian L, Wang Y, Zhang Z, et al. Analogic China map constructed by DNA. Chin Sci Bull, 2006, 51: 2973-2976
[55]
21 Andersen E S, Dong M, Nielsen M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459: 73-75
[56]
22 Ke Y, Sharma J, Liu M, et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett, 2009, 9: 2445-2447
[57]
23 Douglas S M, Chou J J, Shih W M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA, 2007, 104: 6644-6648
[58]
27 Ke Y, Douglas S M, Liu M, et al. Multilayer DNA origami packed on a square lattice. J Am Chem Soc, 2009, 131: 15903-15908
[59]
35 Shin J S, Pierce N A. A synthetic DNA walker for molecular transport. J Am Chem Soc, 2004, 126: 10834-10835
[60]
36 Sherman W B, Seeman N C. A precisely controlled DNA biped walking device. Nano Lett, 2004, 4: 1203-1207
[61]
39 Lund K, Manzo A J, Dabby N, et al. Molecular robots guided by prescriptive landscapes. Nature, 2010, 465: 206-210
[62]
40 He Y, Liu D R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol, 2010, 5: 778-782
[63]
41 Zhang D Y, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem, 2011, 3: 103-113
[64]
42 Seelig G, Soloveichik D, Zhang D Y, et al. Enzyme-free nucleic acid logic circuits. Science, 2006, 314: 1585-1588
[65]
46 Wang Z G, Elbaz J, Willner I. A dynamically programmed DNA transporter. Angew Chem Int Ed, 2012, 51: 4322-4326
[66]
47 Wickham S F J, Bath J, Katsuda Y, et al. A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol, 2012, 7: 169-173
[67]
51 Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science, 2008, 319: 180-183
[68]
52 Ke Y, Nangreave J, Yan H, et al. Developing DNA tiles for oligonucleotide hybridization assay with higher accuracy and efficiency. Chem Commun, 2008, 43: 5622-5624
[69]
55 Chhabra R, Sharma J, Ke Y, et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem Soc, 2007, 129: 10304-10305
[70]
56 Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol, 2008, 3: 418-422
[71]
57 Fu J, Liu M, Liu Y, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc, 2012, 134: 5516-5519
[72]
58 Le J D, Pinto Y, Seeman N C, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett, 2004, 4: 2343-2347
[73]
59 Pinto Y Y, Le J D, Seeman N C, et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett, 2005, 5: 2399-2402
[74]
61 Sharma J, Chhabra R, Andersen C S, et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc, 2008, 130: 7820-7821
[75]
75 Kanan M W, Rozenman M M, Sakurai K, et al. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature, 2004, 431: 545-549
[76]
76 Chen Y, Mao C. Reprogramming DNA-directed reactions on the basis of a DNA conformational change. J Am Chem Soc, 2004, 126: 13240-13241