49 Petros R A, DeSimone J M. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010, 9: 615-627
[2]
50 Choi H S, Liu W, Liu F, et al. Design considerations for tumour-targeted nanoparticles. Nat Nano, 2010, 5: 42-47
[3]
52 Derfus A M, Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004, 4: 11-18
[4]
53 Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett, 2004, 4: 2163-2169
[5]
55 Studer A M, Limbach L K, van Duc L, et al. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett, 2010, 197: 169-174
[6]
56 Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003, 55: 329-347
[7]
60 Kandimalla E R, Bhagat L, Yu D, et al. Conjugation of ligands at the 5'-end of CpG DNA affects immunostimulatory activity. Bioconjug Chem, 2002, 13: 966-974
[8]
67 Gary D J, Puri N, Won Y Y. Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release, 2007, 121: 64-73
[9]
68 Pridgen E M, Langer R, Farokhzad O C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomed, 2007, 2: 669-680
[10]
71 Slowing I I, Vivero-Escoto J L, Wu C W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev, 2008, 60: 1278-1288
[11]
72 Li Y L, Duan X, Jing L H, et al. Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials, 2011, 32: 1923-1931
[12]
76 Schuller V J, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano, 2011, 5: 9696-9702
[13]
79 Wagner V, Dullaart A, Bock A K, et al. The emerging nanomedicine landscape. Nat Biotechnol, 2006, 24: 1211-1217
[14]
81 Singh M, Ott G, Kazzaz J, et al. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm Res, 2001, 18: 1476-1479
[15]
85 Zwiorek K, Bourquin C, Battiany J, et al. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm Res, 2008, 25: 551-562
[16]
90 Dyke C A, Tour J M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem-Eur J, 2004, 10: 813-817
[17]
91 Firme C P, Bandaru P R. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed-Nanotechnol, 2010, 6: 245-256
[18]
92 Sato Y, Yokoyama A, Shibata K, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst, 2005, 1: 176-182
[19]
93 Lacerda L, Soundararajan A, Singh R, et al. Dynamic Imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater, 2008, 20: 225-230
[20]
94 Lu Q, Moore J M, Huang G, et al. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett, 2004, 4: 2473-2477
[21]
95 Liu Y, Wu D C, Zhang W D, et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed, 2005, 44: 4782-4785
[22]
99 Lin Y S, Haynes C L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc, 2010, 132: 4834-4842
[23]
100 He Q J, Zhang Z W, Gao F, et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small, 2011, 7: 271-280
[24]
102 Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol, 2007, 2: 295-300
[25]
106 Zheng X X, Liu Q, Jing C, et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed, 2011, 50: 11994-11998
[26]
107 Li D, Song S P, Fan C H. Target-responsive structural switching for nucleic acid-based sensors. Accounts Chem Res, 2010, 43: 631-641
[27]
112 Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277: 1078-1081
[28]
113 Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc, 2000, 122: 4640-4650
[29]
114 Seferos D S, Prigodich A E, Giljohann D A, et al. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett, 2009, 9: 308-311
[30]
115 Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed, 2010, 49: 3280-3294
[31]
120 Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297-302
[32]
121 Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space. Science, 2011, 332: 342-346
[33]
125 Lin C X, Katilius E, Liu Y, et al. Self-assembled signaling aptamer DNA arrays for protein detection. Angew Chem Int Ed, 2006, 45: 5296-5301
[34]
128 Qian L L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science, 2011, 332: 1196-1201
[35]
130 Omabegho T, Sha R, Seeman N C. A bipedal DNA brownian motor with coordinated legs. Science, 2009, 324: 67-71
[36]
131 Lund K, Manzo A J, Dabby N, et al. Molecular robots guided by prescriptive landscapes. Nature, 2010, 465: 206-210
[37]
132 Gu H Z, Chao J, Xiao S J, et al. A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465: 202-205
[38]
135 Mohri K, Nishikawa M, Takahashi N, et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano, 2012, 6: 5931-5940
[39]
136 Goodman R P, Berry R M, Turberfield A J. The single-step synthesis of a DNA tetrahedron. Chem Commun, 2004: 1372-1373
[40]
138 Keum J W, Bermudez H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun, 2009: 7036-7038
[41]
141 Nangreave J, Han D, Liu Y, et al. DNA origami: A history and current perspective. Curr Opin Chem Biol, 2010, 14: 608-615
[42]
142 Qian L L, Wang Y, Zhang Z, et al. Analogic China map constructed by DNA. Chin Sci Bull, 2006, 51: 2973-2976
[43]
145 Ke Y, Sharma J, Liu M, et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett, 2009, 9: 2445-2447
[44]
146 Sudimack J, Lee R J. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev, 2000, 41: 147-162
[45]
148 Bagalkot V, Farokhzad O C, Langer R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed, 2006, 45: 8149-8152
[46]
150 Lee H, Lytton-Jean A K R, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nano, 2012, 7: 389-393
[47]
151 Fu J L, Yan H. Controlled drug release by a nanorobot. Nat Biotechnol, 2012, 30: 407-408
[48]
2 Mutwiri G K, Nichani A K, Babiuk S, et al. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release, 2004, 97: 1-17
[49]
5 Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408: 740-745
[50]
7 Jung J, Yi A K, Zhang X, et al. Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA. J Immunol, 2002, 169: 2368-2373
[51]
8 Ballas Z K, Rasmussen W L, Krieg A M. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol, 1996, 157: 1840-1845
[52]
9 Schwarz K, Storni T, Manolova V, et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol, 2003, 33: 1465-1470
[53]
10 Krieg A M. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov, 2006, 5: 471-484
[54]
11 Vollmer J, Krieg A M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev, 2009, 61: 195-204
[55]
14 Nishikawa M, Mizuno Y, Mohri K, et al. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials, 2011, 32: 488-494
[56]
15 van Horssen R, Ten Hagen T L, Eggermont A M. TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist, 2006, 11: 397-408
[57]
18 Klinman D M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol, 2004, 4: 249-258
[58]
20 Krieg A M. Antitumor applications of stimulating Toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep, 2004, 6: 88-95
[59]
24 Cooper C L, Davis H L, Morris M L, et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine, 2004, 22: 3136-3143
[60]
26 Kandimalla E R, Bhagat L, Cong Y P, et al. Secondary structures in CpG oligonucleotides affect immunostimulatory activity. Biochem Biophys Res Commun, 2003, 306: 948-953
[61]
32 Sasaki S, Nagatsugi F. Application of unnatural oligonucleotides to chemical modification of gene expression. Curr Opin Chem Biol, 2006, 10: 615-621
[62]
33 Egholm M, Buchardt O, Nielsen P E, et al. Peptide nucleic-acids (PNA)-Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc, 1992, 114: 1895-1897
[63]
35 Braasch D A, Corey D R. Locked nucleic acid (LNA): Fine-tuning the recognition of DNA and RNA. Chem Biol, 2001, 8: 1-7
[64]
36 Kindrachuk J, Potter J E, Brownlie R, et al. Nucleic acids exert a sequence-independent cooperative effect on sequence-dependent activation of Toll-like receptor 9. J Biol Chem, 2007, 282: 13944-13953
[65]
37 Chavany C, Connell Y, Neckers L. Contribution of sequence and phosphorothioate content to inhibition of cell growth and adhesion caused by c-myc antisense oligomers. Mol Pharmacol, 1995, 48: 738-746
[66]
38 Crooke R M. In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anticancer Drug Des, 1991, 6: 609-646
[67]
39 Levin A A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta, 1999, 1489: 69-84
[68]
40 Lai C M, Lai Y K, Rakoczy P E. Adenovirus and adeno-associated virus vectors. DNA Cell Biol, 2002, 21: 895-913
[69]
44 Marshall E. Clinical trials-Gene therapy death prompts review of adenovirus vector. Science, 1999, 286: 2244-2245
[70]
46 Qiu Y, Liu Y, Wang L M, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31: 7606-7619
[71]
48 Albanese A, Tang P S, Chan W C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012, 14: 1-16
3 Tokunaga T, Yamamoto H, Shimada S, et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst, 1984, 72: 955-962
[74]
4 Krieg A M, Yi A K, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995, 374: 546-549
[75]
6 Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev, 2008, 60: 795-804
[76]
12 Fonseca D E, Kline J N. Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev, 2009, 61: 256-262
[77]
13 Carpentier A F, Chen L, Maltonti F, et al. Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res, 1999, 59: 5429-5432
[78]
16 Pashine A, Valiante N M, Ulmer J B. Targeting the innate immune response with improved vaccine adjuvants. Nat Med, 2005, 11: 63-68
[79]
17 Liu XW, Xu Y, Yu T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett, 2012, 12: 4254-4259
[80]
19 Krieg A M. Development of TLR9 agonists for cancer therapy. J Clin Invest, 2007, 117: 1184-1194
[81]
21 Krieg A M. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 2002, 20: 709-760
[82]
22 Cooper C L, Davis H L, Morris M L, et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: A double-blind phase Ⅰ/Ⅱ study. J Clin Immunol, 2004, 24: 693-701
[83]
23 Angel J B, Cooper C L, Clinch J, et al. CpG increases vaccine antigen-specific cell-mediated immunity when administered with hepatitis B vaccine in HIV infection. J Immune Based Ther Vaccines, 2008, 6: 4
[84]
25 Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomed, 2012, 7: 2181-2195
[85]
27 Shimosato T, Kimura T, Tohno M, et al. Strong immunostimulatory activity of AT-oligodeoxynucleotide requires a six-base loop with a self-stabilized 5'-C…G-3' stem structure. Cell Microbiol, 2006, 8: 485-495
[86]
28 Chen X L, Dudgeon N, Shen L, et al. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov Today, 2005, 10: 587-593
[87]
29 Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 2003, 31: 589-595
[88]
30 Lima W F, Prakash T P, Murray H M, et al. Single-stranded siRNAs activate RNAi in animals. Cell, 2012, 150: 883-894
[89]
31 Sundaram P, Kurniawan H, Byrne M E, et al. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci, 2013, 48: 259-271
[90]
34 Wahlestedt C, Salmi P, Good L, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA, 2000, 97: 5633-5638
[91]
41 Roth J A, Cristiano R J. Gene therapy for cancer: What have we done and where are we going? J Natl Cancer Inst, 1997, 89: 21-39
[92]
42 Choi J W, Lee J S, Kim S W, et al. Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev, 2012, 64: 720-729
[93]
43 Hartman Z C, Appledorn D M, Amalfitano A. Adenovirus vector induced innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res, 2008, 132: 1-14
[94]
45 Nishikawa M, Huang L. Nonviral vectors in the new millennium: Delivery barriers in gene transfer. Hum Gene Ther, 2001, 12: 861-870
[95]
47 Arnida, Janat-Amsbury M M, Ray A, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm, 2011, 77: 417-423
[96]
51 Davis M E, Chen Z, Shin D M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2008, 7: 771-782
[97]
54 Wick P, Manser P, Limbach L K, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett, 2007, 168: 121-131
[98]
57 Wilson K D, de Jong S D, Tam Y K. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev, 2009, 61: 233-242
[99]
58 Wei M, Chen N, Li J, et al. Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. Angew Chem Int Ed, 2012, 51: 1202-1206
[100]
59 Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano, 2011, 5: 8783-8789
[101]
61 Yu D, Zhao Q, Kandimalla E R, et al. Accessible 5'-end of CpG-containing phosphorothioate oligodeoxynucleotides is essential for immunostimulatory activity. Bioorg Med Chem Lett, 2000, 10: 2585-2588
[102]
62 Rattanakiat S, Nishikawa M, Funabashi H, et al. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials, 2009, 30: 5701-5706
[103]
63 Meng W J, Yamazaki T, Nishida Y, et al. Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists. Bmc Biotechnol, 2011, 11: 88
65 Li W J, Szoka F C. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res, 2007, 24: 438-449
[106]
66 Yoshizawa T, Hattori Y, Hakoshima M, et al. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm, 2008, 70: 718-725
[107]
69 Patel P C, Giljohann D A, Seferos D S, et al. Peptide antisense nanoparticles. Proc Natl Acad Sci USA, 2008, 105: 17222-17226
[108]
70 Giljohann D A, Seferos D S, Prigodich A E, et al. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc, 2009, 131: 2072-2073
[109]
73 Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med, 2007, 13: 372-377
[110]
74 Dobson J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther, 2006, 13: 283-287
[111]
75 Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol, 2005, 9: 674-679
[112]
77 Lee H, Lytton-Jean A K R, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol, 2012, 7: 389-393
[113]
78 Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303: 1818-1822
[114]
80 Babiuk S, Baca-Estrada M E, Middleton D M, et al. Biphasic lipid vesicles (Biphasix) enhance the adjuvanticity of CpG oligonucleotides following systemic and mucosal administration. Curr Drug Deliv, 2004, 1: 9-15
[115]
82 Diwan M, Elamanchili P, Cao M, et al. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr Drug Deliv, 2004, 1: 405-412
[116]
83 Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release, 2002, 85: 247-262
[117]
84 Kim H, Akagi T, Akashi M. Preparation of CpG ODN-encapsulated anionic poly(amino acid) nanoparticles for gene delivery. Chem Lett, 2010, 39: 278-279
[118]
86 Lv H T, Zhang S B, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release, 2006, 114: 100-109
[119]
87 Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3: 16-20
89 Lam C W, James J T, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol, 2006, 36: 189-217
[122]
96 Jia N Q, Lian Q, Shen H B, et al. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett, 2007, 7: 2976-2980
[123]
97 Podesta J E, Al-Jamal K T, Herrero M A, et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small, 2009, 5: 1176-1185
[124]
98 Bianco A, Hoebeke J, Godefroy S, et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J Am Chem Soc, 2005, 127: 58-59
[125]
101 Radu D R, Lai C Y, Jeftinija K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc, 2004, 126: 13216-13217
[126]
103 Zhu Y F, Meng W J, Li X L, et al. Design of mesoporous silica/cytosine-phosphodiester-guanine oligodeoxynucleotide complexes to enhance delivery efficiency. J Phys Chem C, 2011, 115: 447-452
[127]
104 Wang B, Chen N, Wei Y, et al. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci Rep, 2012, 2: 563
[128]
105 Chen P, Pan D, Fan C H, et al. Gold nanoparticles for high-throughput genotyping of long-range haplotypes. Nat Nanotechnol, 2011, 6: 639-644
[129]
108 Song S P, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev, 2010, 39: 4234-4243
[130]
109 Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed, 2009, 48: 8670-8674
[131]
110 Zhang J, Wang L H, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008, 4: 1196-1200
[132]
111 Li J, Song S P, Liu X F, et al. Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv Mater, 2008, 20: 497-500
[133]
116 Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev, 2008, 60: 1307-1315
[134]
117 Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312: 1027-1030
[135]
118 de Jong W H, Hagens W I, Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29: 1912-1919
[136]
119 Zhang X D, Wu H Y, Wu D, et al. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed, 2010, 5: 771-781
[137]
122 Lin C, Liu Y, Rinker S, et al. DNA tile based self-assembly: Building complex nanoarchitectures. Chem Phys Chem, 2006, 7: 1641-1647
[138]
123 Seeman N C. Nucleic-acid junctions and lattices. J Theor Biol, 1982, 99: 237-247
[139]
124 Seeman N C. An overview of structural DNA nanotechnology. Mol Biotechnol, 2007, 37: 246-257
[140]
126 Zhang Z, Wang Y, Fan C H, et al. Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips. Adv Mater, 2010, 22: 2672-2675
[141]
127 Zhang Z, Zeng D D, Ma H W, et al. A DNA-origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. Small, 2010, 6: 1854-1858
[142]
129 Mao C D, LaBean T H, Reif J H, et al. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature, 2000, 407: 493-496
[143]
133 Walsh A S, Yin H, Erben C M, et al. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5: 5427-5432
[144]
134 Nishikawa M, Matono M, Rattanakiat S, et al. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology, 2008, 124: 247-255
[145]
137 Goodman R P, Schaap I A, Tardin C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310: 1661-1665
[146]
139 Pei H, Lu N, Wen Y L, et al. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater, 2010, 22: 4754-4758
[147]
140 Seeman N C. Nanomaterials based on DNA. Annu Rev Biochem, 2010, 79: 65-87
[148]
143 Douglas S M, Dietz H, Liedl T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 2009, 459: 414-418
[149]
144 Andersen E S, Dong M, Nielsen M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 2009, 459: 73-76
[150]
147 Chen X Y, Plasencia C, Hou Y P, et al. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem, 2005, 48: 5874
[151]
149 Alley S C, Okeley N M, Senter P D. Antibody-drug conjugates: Targeted drug delivery for cancer. Curr Opin Chem Biol, 2010, 14: 529-537
[152]
152 Douglas S M, Bachelet I, Church G M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335: 831-834