全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

抚仙湖近现代沉积物中长链支链烷烃和环烷烃的检出及可能的环境意义

DOI: 10.1360/csb2014-59-8-656, PP. 656-667

Keywords: C2n高支链烃,长链环烷烃,抚仙湖,生物标志物,藻类和细菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

抚仙湖是寡营养大型淡水深水湖,在该湖近百年的沉积物中检出了高丰度的含季碳原子的长链支链烷烃(C2n支链烷烃)、长链环戊烷和长链环己烷系列化合物,其分布特征表现为独特的奇碳或偶碳模式.检出的8种C2n支链烷烃和长链环烷烃在沉积剖面上具有完全一致的丰度变化,表明它们来源的一致性.同时这两类化合物与藻类和细菌来源的短链奇碳正构烷烃(20)、3-甲基烷烃、藿烯、多不饱和脂肪酸、植醇、甾醇、以及长链烷基二醇在剖面上具有相似的丰度变化;而与高等植物来源的长链奇碳正构烷烃具有一定的丰度变化差异,这表明C2n化合物和长链环烷烃可能与水体中藻类和细菌的输入有关,特别是低氧含量水体中改造藻类有机质的异养细菌,这与抚仙湖独特的水体环境有关.

References

[1]  2 Mycke B, Michaelis W, Degens E T. Biomarkers in sedimentary sulfides of Precambrian age. Org Geochem, 1988, 13: 619-625
[2]  3 Logan G A, Hinman M C, Walter M R, et al. Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geochim Cosmochim Acta, 2001, 65: 2317-2336
[3]  8 Fang X, Simpson A J, Gregorich E G, et al. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica. Geochim Cosmochim Acta, 2010, 74: 6485-6498
[4]  9 Derenne S, Largeau C, Berkaloff C. First example of an algaenan yielding an aromatic-rich pyrolysate: Possible geochemical implications on marine kerogen formation. Org Geochem, 1996, 24: 617-627
[5]  10 Kenig F, Simons D H, Crich D, et al. Structure and distribution of branched aliphatic alkanes with quaternary carbon atoms in Cenomanian and Turonian black shales of Pasquia Hills (Saskatchewan, Canada). Org Geochem, 2005, 36: 117-138
[6]  11 Takahashi M, Satoh T, Toya T. Oligoethylenes in high pressure polyethylenes I identification of homologues. Polym Bull, 1980, 2: 215-220
[7]  12 Grossjean E, Logan G A. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine survey S282. Org Geochem, 2007, 38: 853-869
[8]  13 Brocks J J, Grosjean E, Logan G A. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim Cosmochim Acta, 2008, 72: 871-888
[9]  21 Reed J D, Illich H A, Horsfield B. Biochemical evolutionary significance of Ordovician oils and their sources. Org Geochem, 1986, 10: 347-358
[10]  26 Meyers P A, Ishiwatari R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 1993, 20: 867-900
[11]  29 中国科学院南京地理与湖泊研究所. 抚仙湖. 北京: 海洋出版社, 1990. 1-317
[12]  31 李荫玺, 刘红, 陆娅, 等. 抚仙湖富营养化初探. 湖泊科学, 2003, 15: 285-288
[13]  32 Zeng H A, Wu J L. Sedimentary records of heavy metal pollution in Fuxian Lake, Yunnan Province, China: Intensity, history, and sources. Pedosphere, 2009, 19: 562-569
[14]  33 王小雷, 杨浩, 丁兆运, 等. 云南抚仙湖近现代沉积速率变化研究. 地理学报, 2011, 66: 1551-1561
[15]  36 Wu J, Lin L, Gagan M K, et al. Organic matter stable isotope (d 13, d 15) response to historical eutrophication of Lake Taihu, China. Hydrobiologia, 2006, 563: 19-29
[16]  37 Tierney J E, Mayes M T, Meyer N, et al. Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci, 2010, 3: 422-425
[17]  39 Pearson E J, Farrimond P, Juggins S. Lipid geochemistry of lake sediments from semi-arid Spain: Relationships with source inputs and environmental factors. Org Geochem, 2007, 38: 1169-1195
[18]  41 Lu Y, Meyers P A. Sediment lipid biomarkers as recorders of the contamination and cultural eutrophication of Lake Erie, 1909-2003. Org Geochem, 2009, 40: 912-921
[19]  46 Hu J, Zhang H, Peng P. Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China. Estuar Coast Shelf Sci, 2006, 66: 346-356
[20]  49 Han J, Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA, 1969, 64: 436-443
[21]  50 王建云, 普发贵. 抚仙湖垂向水质状况及特征研究. 玉溪师范学院院报, 2003, 19(增刊): 53-58
[22]  51 Elias V O, Simoneit B R T, Cardoso J N. Even n-Alkane predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften, 1997, 84: 415-420
[23]  52 罗攀, 彭平安, 吕厚远, 等. 表土长链正构烷烃CPI值的纬向变化: CPI作为气候干旱程度替代指标的证据. 中国科学: 地球科学, 2012, 42: 1729-1741
[24]  53 Hao F, Zhou X, Zhu Y, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org Geochem, 2011, 42: 323-339
[25]  54 Wang Y L, Fang X M, Zhang T W, et al. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change. Appl Geochem, 2010, 25: 1478-1486
[26]  55 Brown T C, Kenig F. Water column structure during deposition of Middle Devonian-Lower Mississippian black and green/gray shales of the Illinois and Michigan Basins: A biomarker approach. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 215: 59-85
[27]  1 Greenwood P F, Arouri K R, Logan G A, et al. Abundance and geochemical significance of C2n dialkylalkanes and highly branched C3n alkanes in diverse Meso-and Neoproterozoic sediments. Org Geochem, 2004, 35: 331-346
[28]  4 Kenig F, Simons D H, Crich D, et al. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proc Natl Acad Sci USA, 2003, 100: 12554-12558
[29]  5 Aroui K, Conaghan P J, Walter M R, et al. Reconnaissance sedimentology and hydrocarbon biomarkers of Ediacarian microbial mats and acritarchs, lower Ungoolya Group, Officer Basin. Precambrian Res, 2000, 100: 235-280
[30]  6 Shiea J, Brassell S C, Ward D M. Mid chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats. Org Geochem, 1990, 15: 223-231
[31]  7 Kenig F, Sinninghe Damsté J S, Kock-van Dalen A C, et al. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim Cosmochim Acta, 1995, 59: 2999-3015
[32]  14 Menor-Salván C, Tornos F, Fernández-Remolar D, et al. Association between catastrophic paleovegetation changes during Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits. Earth Planet Sci Lett, 2010, 299: 398-408
[33]  15 Flaviano C, Berre F L, Derenne S, et al. First indications of the formation of kerogen amorphous fractions by selective preservation. Role of non-hydrolysable macromolecular constituents of Eubacterial cell walls. Org Geochem, 1994, 22: 759-771
[34]  16 白艳, 方小敏, 王永莉, 等. 现代土壤中含季碳支链烷烃的分布特征及环境意义. 科学通报, 2006, 51: 448-454
[35]  17 张虎才, 常凤琴, 李斌, 等. 柴达木察尔汗湖贝壳堤剖面长链支链烷烃及其古环境意义. 科学通报, 2007, 52: 707-714
[36]  18 Ingrain L L, Ellis J, Crisp P T, et al. Comparative study of oil shales and shale oils from the Mahogany Zone, Green River Formation (U.S.A.) and Kerosene Creek seam, Rundle Formation (Australia). Chem Geol, 1983, 38: 185-212
[37]  19 Rullk?tter J, Meyers P A, Schaefer R G, et al. Oil generation in the Michigan basin: A biological marker and carbon isotope approach. Org Geochem, 1986, 10: 359-375
[38]  20 Fowler M G, Abolins P, Douglas A G. Monocyclic alkanes in Ordovician organic matter. Org Geochem, 1986, 10: 815-823
[39]  22 Oshima M, Ariga T. w-Cyclohexyl fatty acids in acidophilic bacteria. J Biol Chem, 1975, 256: 6963-6968
[40]  23 Simoneit B R T, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta, 2004, 68: 2275-2294
[41]  24 Jungblut A D, Allen M A, Burns B P, et al. Lipid biomarker analysis of cyanobacteria-dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Org Geochem, 2009, 40: 258-269
[42]  25 Ogihara S, Ishiwatari R. Unusual distribution of hydrocarbons in a hydrothermally altered phosphorite nodule from Kusu Basin, northern Kyushu, Japan. Org Geochem, 1998, 29: 155-161
[43]  27 Vreca P, Muri G. Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnol Oceanogr, 2006, 51: 781-790
[44]  28 Teranes J L, Bernasconi S M. Factors controlling d13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnol Oceanogr, 2005, 50: 914-922
[45]  30 Liu G M, Liu Z W, Li Y L, et al. Effects of fish introduction and eutrophication on the cladoceran community in Lake Fuxian, a deep oligotrophic lake in southwest China. J Paleolimnol, 2009, 42: 427-435
[46]  34 姜磊, 蔡春芳, 张永东, 等. 东胜铀矿床中发现硫酸盐还原菌和硫氧化菌类脂. 科学通报, 2012, 57: 1028-1036
[47]  35 侯长定. 抚仙湖富营养化现状、趋势及其原因分析. 云南环境科学, 2001, 20: 39-41
[48]  38 张海生, 陆斗定, 于培松, 等. 西南极企鹅栖息地粪土层生物标志物记录和实测群落结构变化与ENSO 的响应. 中国科学: 地球科学, 2013, 43: 232-242
[49]  40 Peters K E, Walters C C, Moldowan J M. The Biomarker Guide. 2nd ed. Cambridge: Cambridge University Press, 2005
[50]  42 Hodell D A, Schelske C L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr, 1998, 43: 200-214
[51]  43 Hu J, Zhang G, Li K, et al. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records. Mar Chem, 2008, 110: 7-17
[52]  44 Ekpo B O, Oyo-Ita O E, Oros D R, et al. Sources of organic contaminants in solvents and implications for geochemistry and environmental forensics: An example from local Vendors in Nigeria. Environ Forens, 2012, 13: 1-6
[53]  45 Silliman J E, Meyers P A, Eadie B J. Perylene: An indicator of alteration processes or precursor materials? Org Geochem, 1998, 29: 1737-1744
[54]  47 Dachs J, Bayona J M, Fillaux J, et al. Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. Mar Chem, 1999, 65: 195-210
[55]  48 Xiong Y, Wu F, Fang J, et al. Organic geochemical record of environmental changes in Lake Dianchi, China. J Paleolimn, 2010, 44: 217-231

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133