全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响

DOI: 10.1360/csb2014-59-4-5-366, PP. 366-373

Keywords: 筑坝,溶解性无机碳,碳同位素组成,浮游植物,乌江

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究筑坝对河流溶解性无机碳(DIC)地球化学行为的影响,对乌江流域的水库及河流进行了半月1次为期1年的现场监测和取样分析.相对于入库河流,库区叶绿素a浓度平均提高了5.6倍,库区表层DIC中HCO3-和溶解CO2比重下降,CO32-比重和DIC碳同位素值(δ13CDIC)上升,而水库下泄水中DIC各组分却表现出与库区表层相反的地球化学行为.δ13CDIC变化范围为-10.2‰~2.5‰,表明碳酸盐岩风化、光合作用及呼吸作用共同控制了δ13CDIC的变化.河流筑坝后浮游植物生物活动增强,显著影响了原始河流DIC的地球化学行为,δ13CDIC可以用来判断这种变化过程.河流-水库水体高频率监测对于准确评估筑坝河流CO2释放通量和明确碳循环过程中的源汇关系是非常必要的.

References

[1]  1 袁道先. 地球系统的碳循环和资源环境效应. 第四纪研究, 2001, 21: 223-232
[2]  2 刘丛强. 生物地球化学过程与地表物质循环——西南喀斯特流域侵蚀与生源要素循环. 北京: 科学出版社, 2007
[3]  3 Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci, 1982, 282: 401-450
[4]  4 Ittekkot V. Global trends in the nature of organic matter in the river suspensions. Nature, 1988, 332: 436-438
[5]  9 王敏, 张龙军, 桂祖胜. 长江干流有机碳的时空运输特征及三峡工程对其影响. 中国海洋大学学报, 2011, 41: 117-124
[6]  10 Wang S L, Yeager K M, Wan G J, et al. Carbon export and HCO3sup>- fate in carbonate catchments: A case study in the karst plateau of southwestern China. Appl Geochem, 2012, 27: 64-72
[7]  11 Atekawana E A, Krishnamurthy R V. Seasonal variations of dissolved inorganic carbon and δ13C of surface water: Application of a modified gas evolution technique. J Hydrol, 1998, 205: 265-278
[8]  12 Mackereth F J H, Heron J, Talling J F. Water Analysis: Some Revised Methods for Limnologists. Ambleside: Freshwater Biological Association, 1989
[9]  14 Han G L, Liu C Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol, 2004, 204: 1-21
[10]  15 Wetzel R G. Limnology: Lake and River Ecosystems. Salt Lake: Academic Press, 2001
[11]  16 Aucour A-M, Sheppard S M, Guyomar O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rh?ne river system. Chem Geol, 1999, 159: 87-105
[12]  17 张玉超, 钱新, 钱瑜, 等. 太湖水温分层现象的监测与分析. 环境管理与科学, 2008, 33: 117-121
[13]  18 Telmer K, Veizer J. Carbon ?uxes, pCO2 and substrate weathering in a large northern river basin, Canada: Carbon isotope perspectives. Chem Geol, 1999, 159: 61-86
[14]  21 Wang B, Liu C Q, Wang F, et al. The distributions of autumn picoplankton in relation to environmental factors in the reservoirs along the Wujiang River in Guizhou Province, SW China. Hydrobiologia. 2008, 598: 35-45
[15]  5 Rosenberg D M, Mccully P, Pringle C M. Global-scale environmental effects of hydrological alterations introduction. Bioscience, 2000, 50: 746-751
[16]  6 喻元秀, 刘丛强, 汪福顺, 等. 乌江流域梯级水库中溶解无机碳及其同位素分异特征. 科学通报, 2008, 53: 1935-1941
[17]  7 Myrbo A, Shapley M D. Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana. Geochim Cosmochim Acta, 2006, 70: 2699-2714
[18]  8 Maberly S C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol, 1996, 35: 579-598
[19]  13 Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley, 1981
[20]  19 Andrews J E, Greenaway A M, Dennis P F, et al. Isotopic effects on inorganic carbon in a tropical river caused by caustic discharges from bauxite processing. Appl Geochem, 2001, 16: 197-206
[21]  20 Wachniew P. Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland. Chem Geol, 2006, 233: 293-308

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133