全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

贺兰山地区震旦系碳酸盐岩碳氧同位素分析

DOI: 10.1360/csb2014-59-4-5-355, PP. 355-365

Keywords: 碳氧同位素,震旦系,贺兰山地区,冰碛岩

Full-Text   Cite this paper   Add to My Lib

Abstract:

对宁夏贺兰山地区出露的震旦系碳酸盐岩进行了详细的野外地质调查和碳氧同位素分析测试,发现该地区震旦系正目观组碳酸盐岩碳同位素表现出一定的变化规律由北到南的几条典型剖面中δ13C值自下向上均逐渐减小,变化范围都集中在?4.51‰~0.11‰,最大负偏值达到了?6.88‰.兔儿坑组中发现的宏体生物化石在华南灯影组中部出现,从而将正目观组和兔儿坑组的形成时代限定在震旦纪.冰川的发育导致了极端寒冷的气候,海洋中有机质大幅降低,δ13C值出现普遍的负偏.兔儿坑组代表了冰期的结束,生物的复苏,海洋中有机物含量增加.通过与全球其他地区同期地层碳氧同位素分布的投图对比,发现正目观组冰期沉积的形成时间可能晚于Gaskiers冰期,研究其为探讨埃迪卡拉纪华北板块的古海洋、古地理环境和生物演化起了重要作用,为全球同期地层碳氧同位素数据库提供了新的补充.

References

[1]  1 Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 1995, 73: 27-49
[2]  10 Jiang G, Kennedy M J, Christie B N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822-826
[3]  13 Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciations. Paleogeogr Paleoclimatol Paleoecol, 2009, 277: 158-172
[4]  14 徐备, 郑海飞, 姚海涛, 等. 塔里木板块震旦系碳同位素组成及其意义. 科学通报, 2002, 47: 1740-1744
[5]  18 吕苗, 朱茂炎, 赵美娟. 湖北宜昌茅坪泗溪剖面埃迪卡拉系岩石地层和碳同位素地层研究. 地层学杂志, 2009, 33: 359-372
[6]  19 蒋干清, 张世红, 史晓颖, 等. 华南埃迪卡拉纪陡山沱盆地氧化界面的迁移与碳同位素异常. 中国科学D辑: 地球科学, 2008, 38: 1481-1495
[7]  20 顾其昌. 贺兰山的晚前寒武纪冰碛层. 地层学杂志, 1982, 6: 156-157
[8]  21 郑昭昌, 李玉珍, 陆松年, 等. 贺兰山区震旦纪正目观组研究报告, 1987
[9]  22 张抗. 鄂尔多斯盆地边缘沉积盖层底部类冰债岩的讨论. 中国区域地质, 1991, 1: 79-85
[10]  23 王自强, 尹崇玉, 高林志, 等. 用化学地层学研究新元古代地层划分和对比. 地学前缘, 2006, 13: 268-279
[11]  24 宁夏回族自治区地质矿产局. 宁夏回族自治区岩石地层. 武汉: 中国地质大学出版社, 1996. 23-29
[12]  26 宁夏地质勘探局. 宁夏地质志. 北京: 地质出版社, 1990. 38-42
[13]  27 谢露华, 韦刚健, 邓文峰, 等. 不同形态碳的在线测试及多点校正. 见: 西北大学, 编. 固体地球科学重点实验室联盟会议论文集. 北京: 地质出版社, 2012
[14]  28 张同刚, 储雪蕾, 张启锐, 等. 陡山沱期古海水的硫和碳同位素变化. 科学通报, 2003, 48: 850-855
[15]  29 杨式溥, 郑绍昌. 宁夏贺兰山震旦纪正目观组遗迹化石. 地球科学, 1985, 10: 9-10
[16]  30 李日辉, 杨式浦, 李维群. 中国震旦系-寒武系界线过渡层遗迹化石研究. 北京: 地质出版社, 1997. 1-99
[17]  31 华洪, 陈哲, 张录易. Shaanxilithes在贵州的发现及其意义. 地层学杂志, 2004, 28: 265-269
[18]  32 Shen B, Xiao S, Zhou C, et al. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Res, 2010, 177: 241-252
[19]  33 Shen B, Xiao S, Dong L, et al. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: Implications for their evolutionary roots and biostratigraphic significance. J Paleontol, 2007, 81: 1396-1411
[20]  34 赵祥生. 建所以来西北地区前寒武纪地质研究工作十大进展. 西北地质科学, 1992, 13: 129-138
[21]  35 张录易, 华洪, 谢从瑞. 新元古代末期高家山生物群研究新进展与展望. 中国地质, 2001, 28: 19-24
[22]  36 Cai Y, Hua H, Xiao S, et al. Biostratinomy of the Late Ediacaran pyritized Gaojiashan lagerstatie from southern Shananxi, South China: Importance of event deposits. Palaios, 2010, 25: 487-506
[23]  41 Xu B, Jian P, Zheng H, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res, 2005, 136: 107-123
[24]  42 Xu B, Xiao S. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 2009, 168: 247-258
[25]  43 Zhu M Y, Wang H F. Neoproterozoic glaciogenic diamictites of the Tarim Block, NW China. Geol Soc Lond Mem, 2011, 36: 367-378
[26]  51 Blanco G, Rajesh H M, Gaucher C, et al. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): Implications for the paleogeographic evolution of southwestern Gondwana. Precambrian Res, 2009, 171: 57-73
[27]  52 Pecoits E, Gingras M, Aubet N, et al. Ediacaran in Uruguay: Palaeoclimatic and palaeobiological implications. Sedimentology, 2008, 55: 689-719
[28]  53 Pecoits E. Ediacaran iron formations and carbonates of Uruguay: Palaeoceanographic, palaeoclimatic and palaeobiologic implications. Doctor Dissertation. Alberta: University of Alberta, 2010. 230
[29]  54 Natalie R A, Ernesto P, Andrey B, et al. Chemostratigraphic constraints on early Ediacaran carbonate ramp dynamics, Río de la Plata craton, Uruguay. Gondwana Res, 2012, 22: 1073-1090
[30]  55 李廷栋. 中国岩石圈构造单元. 中国地质, 2006, 33: 700-710
[31]  56 吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征. 地质学报, 1993, 67: 97-108
[32]  57 杨巍然, 王杰, 梁晓. 亚洲大地构造基本特征和演化规律. 地学前缘, 2012, 19: 1-17
[33]  58 Lambert I B, Walter M R, Zang W. Paleoenviroment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325: 140-142
[34]  59 Dahl T W, Hammarlund E U, Anbar A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 2010, 107: 17911-17915
[35]  2 Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the “Cambrian explosion”. Earth Planet Sci Lett, 1994, 128: 671-681
[36]  3 Kaufman A J, Knoll A H, Narbonne G M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci USA, 1997, 94: 6600-6605
[37]  4 Knoll A H. Learning to tell Neoproterozoic time. Precambrian Res, 2000, 100: 3-20
[38]  5 Marshall J D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag, 1992, 129: 143-160
[39]  6 Akihiro K, Yoko K, Tetsuhiro T, et al. Evolution of animal multicellularity stimulated by dissolved organic carbon in early Ediacaran ocean: DOXAM hypothesis. Isl Arc, 2011, 20: 280-293
[40]  7 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限. 岩石学报, 2011, 27: 545-565
[41]  8 Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic Snowball Earth. Science, 1998, 281: 1342-1346
[42]  9 郑永飞. 新元古代超大陆构型中华南的位置. 科学通报, 2004, 49: 715-717
[43]  11 Chumakov N M. A problem of total glaciations on the Earth in the Late Precambrian. Stratigr Geo Correl, 2008, 16: 107-119
[44]  12 Knoll A H, Walter M R, Narbonne G M, et al. A new period for the geologic time scale. Science, 2004, 305: 621-622
[45]  15 张艳, 王璞珺, 刘万洙, 等. 库鲁克塔格地区震旦系冰碛岩沉积环境及意义. 新疆地质, 2006, 24: 365-368
[46]  16 张良, 杜远生, 左景勋, 等. 河南汝州-鲁山一带震旦系东坡组碳酸盐沉积的碳同位素负偏及其地质意义. 地球科学, 2008, 33: 523-530
[47]  17 赵彦彦. 皖南新元古界蓝田组碳酸盐岩沉积地球化学. 博士学位论文. 合肥: 中国科学技术大学, 2009. 108-126
[48]  25 宁夏回族自治区地质环境监测总站. J48C002003(银川市)幅1:25万区域地质调查成果报告. 2008
[49]  37 Mike M, James D, Schiffbauer, et al. Taphonomy of the Upper Ediacaran enigmatic ribbonlike fossil Shaan xilithes. Palaios, 2012, 27: 354-372
[50]  38 Halverson G P, Hoffman P F, Schrag D P, et al. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull, 2005, 117: 1181-1207
[51]  39 Guerrou L E, Allen P A, Cozzi A. Erratum to ‘chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in earth history: The Neoproterozoic Shuram Formation(Nafun Group, Oman)’. Precambrian Res, 2007, 153: 262-265
[52]  40 Guerrou L E, Allen P A, Cozzi A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrian Res, 2006, 146: 68-92
[53]  44 Xiao S H, Bao H M, Wang H F, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Res, 2004, 130: 1-26
[54]  45 Shen B, Xiao S, Bao H, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim Cosmochim Acta, 2011, 75: 1357-1373
[55]  46 陆松年, 马国干, 高振家, 等. 中国晚前寒武纪冰成岩系初探. 见: 地质矿产部, 编. 前寒武纪地质, 北京: 地质出版社, 1983, 1: 1-86
[56]  47 Prave A R, Fallick A E, Thomas C W, et al. A composite C-isotope profile for the Neoproterozoic Dalradian supergroup of Scotland and Ireland. J Geol Soc Lond, 2009, 166: 845-857
[57]  48 Mccay G A, Prave A R, Alsop G I, et al. Glacial trinity: Neoproterozoic Earth history within the British-Irish Caledonides. Geology, 2006, 34: 901-912
[58]  49 Prave A R, Strachan R A, Fallick A E. Global C cycle perturbations recorded in marbles: A record of Neoprot erozoic Earth history within the Dalradian succession of the Shetland Islands, Scotland. J Geol Soc Lond, 2009, 166: 129-135
[59]  50 Gaucher C, Sial A N, Blanco G, et al. Chemostratigraphy of the lower Arroyo del Soldado Group (Vendian, Uruguay) and paleoclimatic implications. Gondwana Res, 2004, 7: 715-730
[60]  60 Noah J P, Olivier J R, Andrey B, et al. The evolution of the marine phosphate reservoir. Nature, 2010, 467: 1088-1090

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133