1 Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 1995, 73: 27-49
[2]
10 Jiang G, Kennedy M J, Christie B N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822-826
[3]
13 Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciations. Paleogeogr Paleoclimatol Paleoecol, 2009, 277: 158-172
32 Shen B, Xiao S, Zhou C, et al. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Res, 2010, 177: 241-252
[19]
33 Shen B, Xiao S, Dong L, et al. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: Implications for their evolutionary roots and biostratigraphic significance. J Paleontol, 2007, 81: 1396-1411
36 Cai Y, Hua H, Xiao S, et al. Biostratinomy of the Late Ediacaran pyritized Gaojiashan lagerstatie from southern Shananxi, South China: Importance of event deposits. Palaios, 2010, 25: 487-506
[23]
41 Xu B, Jian P, Zheng H, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res, 2005, 136: 107-123
[24]
42 Xu B, Xiao S. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 2009, 168: 247-258
[25]
43 Zhu M Y, Wang H F. Neoproterozoic glaciogenic diamictites of the Tarim Block, NW China. Geol Soc Lond Mem, 2011, 36: 367-378
[26]
51 Blanco G, Rajesh H M, Gaucher C, et al. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): Implications for the paleogeographic evolution of southwestern Gondwana. Precambrian Res, 2009, 171: 57-73
[27]
52 Pecoits E, Gingras M, Aubet N, et al. Ediacaran in Uruguay: Palaeoclimatic and palaeobiological implications. Sedimentology, 2008, 55: 689-719
[28]
53 Pecoits E. Ediacaran iron formations and carbonates of Uruguay: Palaeoceanographic, palaeoclimatic and palaeobiologic implications. Doctor Dissertation. Alberta: University of Alberta, 2010. 230
[29]
54 Natalie R A, Ernesto P, Andrey B, et al. Chemostratigraphic constraints on early Ediacaran carbonate ramp dynamics, Río de la Plata craton, Uruguay. Gondwana Res, 2012, 22: 1073-1090
58 Lambert I B, Walter M R, Zang W. Paleoenviroment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325: 140-142
[34]
59 Dahl T W, Hammarlund E U, Anbar A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 2010, 107: 17911-17915
[35]
2 Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the “Cambrian explosion”. Earth Planet Sci Lett, 1994, 128: 671-681
[36]
3 Kaufman A J, Knoll A H, Narbonne G M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci USA, 1997, 94: 6600-6605
[37]
4 Knoll A H. Learning to tell Neoproterozoic time. Precambrian Res, 2000, 100: 3-20
[38]
5 Marshall J D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag, 1992, 129: 143-160
[39]
6 Akihiro K, Yoko K, Tetsuhiro T, et al. Evolution of animal multicellularity stimulated by dissolved organic carbon in early Ediacaran ocean: DOXAM hypothesis. Isl Arc, 2011, 20: 280-293
37 Mike M, James D, Schiffbauer, et al. Taphonomy of the Upper Ediacaran enigmatic ribbonlike fossil Shaan xilithes. Palaios, 2012, 27: 354-372
[50]
38 Halverson G P, Hoffman P F, Schrag D P, et al. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull, 2005, 117: 1181-1207
[51]
39 Guerrou L E, Allen P A, Cozzi A. Erratum to ‘chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in earth history: The Neoproterozoic Shuram Formation(Nafun Group, Oman)’. Precambrian Res, 2007, 153: 262-265
[52]
40 Guerrou L E, Allen P A, Cozzi A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrian Res, 2006, 146: 68-92
[53]
44 Xiao S H, Bao H M, Wang H F, et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Res, 2004, 130: 1-26
[54]
45 Shen B, Xiao S, Bao H, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim Cosmochim Acta, 2011, 75: 1357-1373
47 Prave A R, Fallick A E, Thomas C W, et al. A composite C-isotope profile for the Neoproterozoic Dalradian supergroup of Scotland and Ireland. J Geol Soc Lond, 2009, 166: 845-857
[57]
48 Mccay G A, Prave A R, Alsop G I, et al. Glacial trinity: Neoproterozoic Earth history within the British-Irish Caledonides. Geology, 2006, 34: 901-912
[58]
49 Prave A R, Strachan R A, Fallick A E. Global C cycle perturbations recorded in marbles: A record of Neoprot erozoic Earth history within the Dalradian succession of the Shetland Islands, Scotland. J Geol Soc Lond, 2009, 166: 129-135
[59]
50 Gaucher C, Sial A N, Blanco G, et al. Chemostratigraphy of the lower Arroyo del Soldado Group (Vendian, Uruguay) and paleoclimatic implications. Gondwana Res, 2004, 7: 715-730
[60]
60 Noah J P, Olivier J R, Andrey B, et al. The evolution of the marine phosphate reservoir. Nature, 2010, 467: 1088-1090