全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

我国东部土壤氮转化微生物的功能分子生态网络结构及其对作物的响应

DOI: 10.1360/972013-751, PP. 387-396

Keywords: 氮转化基因,功能分子,生态网络,种植玉米,黑土,潮土,红壤

Full-Text   Cite this paper   Add to My Lib

Abstract:

农田土壤-植物系统的氮素循环影响了生产力和环境,但土壤微生物之间的相互作用对氮素循环的影响机制仍不清楚,同时这种相互作用如何响应种植作物等管理方式也不明确.本研究在中国东部3个气候带,选择3种典型的地带性土壤类型(寒温带黑土、暖温带潮土和中亚热带红壤)设置不种植(裸地,non-cropping)和种植玉米(cropping)的田间试验,基于高通量基因芯片测定不同土壤共有的氮转化基因(核心氮转化基因),利用随机矩阵方法建立土壤核心氮转化基因的分子生态网络,揭示种植玉米对土壤核心氮转化基因网络结构的影响.研究表明种植玉米增加了土壤中大部分核心氮转化基因的丰度,显著提高了核心氮转化基因网络的复杂程度.网络拓扑结构的模块数由裸地处理的8个增加到种植玉米的28个.裸地土壤核心氮转化基因网络有2个模块枢纽,其关键基因为固氮基因(nifH);种植玉米后网络有9个模块枢纽,其关键基因包含固氮(nifH)和反硝化基因(narG和nosZ).土壤核心氮转化基因的功能分子生态网络结构与植物、气候、土壤等因素显著相关,说明农田管理和环境条件的变化可以通过改变微生物的分子生态网络结构,影响其驱动农田养分循环的功能.

References

[1]  3 Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892
[2]  5 Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive earth’s biogeochemical cycles. Science, 2008, 320: 1034-1039
[3]  6 Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806-809
[4]  11 Fath B D, Scharler U M, Ulanowicz R E, et al. Ecological network analysis: Network construction. Ecol Model, 2007, 208: 49-55
[5]  16 Fuhrman J A. Microbial community structure and its functional implications. Nature, 2009, 459: 193-199
[6]  17 Zhou J, Deng Y, Luo F, et al. Functional molecular ecological networks. MBio, 2010, 1: 1592-1601
[7]  19 He Z, Xu M, Deng Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett, 2010, 13: 564-575
[8]  22 Hines J, Megonigal J P, Denno R F. Nutrient subsidies to belowground microbes impact aboveground food web interactions. Ecology, 2006, 87: 1542-1555
[9]  23 Aira M, Gómez-Brandón M, Lazcano C, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem, 2010, 42: 2276-2281
[10]  24 van Elsas J D, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 2002, 13: 29-40
[11]  25 Philippot L, Piutti S, Martin-Laurent F, et al. Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol, 2002, 68: 6121-6128
[12]  26 Sun B, Wang X, Wang F, et al. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl Environ Microbiol, 2013, 79: 3327-3335
[13]  27 汪峰, 曲浩丽, 丁玉芳, 等. 三种农田土壤中氨氧化细菌amoA基因多样性比较分析. 土壤学报, 2012, 49: 347-353
[14]  28 孙波, 郑宪清, 胡锋, 等. 水热条件与土壤性质对农田土壤硝化作用的影响. 环境科学, 2009, 30: 206-213
[15]  29 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000
[16]  30 He Z, Van Nostrand J D, Zhou J. Applications of functional gene microarrays for profiling microbial communities. Curr Opin Biotech, 2012, 23: 460-466
[17]  32 Horvath S, Zhang B, Carlson M, et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA, 2006, 103: 17402-17407
[18]  33 Luo F, Yang Y, Zhong J, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics, 2007, 8: 299
[19]  34 Luo F, Zhong J X, Yang Y F, et al. Application of random matrix theory to biological networks. Phys Lett A, 2006, 357: 420-423
[20]  39 Fitter A H, Gilligan C A, Hollingworth K, et al. Biodiversity and ecosystem function in soil. Funct Ecol, 2005, 19: 369-377
[21]  40 He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol, 2007, 9: 2364-2374
[22]  41 Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol, 2005, 4: 1-43
[23]  44 Barabasi A L, Oltvai Z N. Network biology: Understanding the cell’s functional organization. Nat Rev Genet, 2004, 5: 101-113
[24]  45 Kitano H. Biological robustness. Nat Rev Genet, 2004, 5: 826-837
[25]  46 Jackson S T, Betancourt J L, Booth R K, et al. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci USA, 2009, 106 (Suppl 2): 19685-19692
[26]  52 贾仲君. 稳定性同位素核酸探针技术 DNA-SIP 原理与应用. 微生物学报, 2011, 51: 1585-1594
[27]  1 Gutierrez R A. Systems biology for enhanced plant nitrogen nutrition. Science, 2012, 336: 1673-1675
[28]  2 Zhang F, Chen X, Vitousek P. Chinese agriculture: An experiment for the world. Nature, 2013, 497: 33-35
[29]  4 Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451: 293-296
[30]  7 Francis C A. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 2005, 102: 14683-14688
[31]  8 Chu H, Fujii T, Morimoto S, et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol, 2006, 73: 485-491
[32]  9 Teng Q, Sun B, Fu X, et al. Analysis of nifH gene diversity in red soil amended with manure in Jiangxi, South China. J Microbiol, 2009, 47: 135-141
[33]  10 Prieme A, Braker G, Tiedje J M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol, 2002, 68: 1893-1900
[34]  12 Holland M D, Hastings A. Strong effect of dispersal network structure on ecological dynamics. Nature, 2008, 456: 792-794
[35]  13 Montoya J M, Pimm S L, Sole R V. Ecological networks and their fragility. Nature, 2006, 442: 259-264
[36]  14 Cattin M F, Bersier L F, Banasek-Richter C, et al. Phylogenetic constraints and adaptation explain food-web structure. Nature, 2004, 427: 835-839
[37]  15 Raes J, Bork P. Molecular eco-systems biology: Towards an understanding of community function. Nat Rev Microbiol, 2008, 6: 693-699
[38]  18 Deng Y, Jiang Y H, Yang Y F, et al. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13: 113
[39]  20 Zhou J, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio, 2011, 2: e00122-11
[40]  21 Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633
[41]  31 Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol, 2008, 4: e1000117
[42]  35 Smoot M E, Ono K, Ruscheinski J, et al. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27: 431-432
[43]  36 Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science, 2002, 296: 910-913
[44]  37 R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation Statistical Computing, 2008
[45]  38 Olesen J M, Bascompte J, Dupont Y L, et al. The modularity of pollination networks. Proc Natl Acad Sci USA, 2007, 104: 19891-19896
[46]  42 Barabasi A L. Scale-free networks: A decade and beyond. Science, 2009, 325: 412-413
[47]  43 Alon U. Biological networks: The tinkerer as an engineer. Science, 2003, 301: 1866-1867
[48]  47 van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett, 2008, 11: 296-310
[49]  48 Stres B, Tiedje J M. New frontiers in soil microbiology: How to link structure and function of microbial communities? In: Nannipieri P, Smalla K, eds. Nucleic Acids and Proteins in Soil. Berlin Heidelberg: Springer-Verlag, 2006. 1-22
[50]  49 Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol, 2009, 11: 1658-1671
[51]  50 Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309: 1088-1090
[52]  51 Wellington E M H, Berry A, Krsek M. Resolving functional diversity in relation to microbial community structure in soil: Exploiting genomics and stable isotope probing. Curr Opin Microbiol, 2003, 6: 295-301

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133