全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

台湾东北部龟山岛附近海域热液流体中的稀土元素组成及其对浅海热液活动的指示

, PP. 0-0

Keywords: 稀土元素,热液流体,浅海,龟山岛热液区,台湾东北部

Full-Text   Cite this paper   Add to My Lib

Abstract:

热液喷口系统中的稀土地球化学被集中调查,但是浅海热液系统中这方面的研究很少.此次研究,呈现了台湾东北部附近海域龟山岛热液流体中稀土元素分布的新数据.龟山岛热液区内黄色流体和白色流体中的总稀土(ΣREE)浓度相当,约为813~1212ng/L,与浅海海水相比显著富集.稀土元素球粒陨石标准化(REEN)分配模式显示,龟山岛黄色流体具有轻微的负Eu异常,白色流体没有Eu异常,这与龟山岛热液流体的相对低温和更具氧化性组成的特点有关.龟山岛热液流体中的轻稀土(LREE)相对重稀土(HREE)轻微富集.黄色流体和白色流体中的稀土元素行为与水岩相互作用时间较短有关.此外,黄色流体中的稀土元素分布还受到极低pH(2.81和2.29)、流体沸腾以及自然硫沉淀形成的影响,而白色流体则还受到细小颗粒物吸附以及稀土与氯配合的影响.

References

[1]  1 曾志刚, 蒋富清, 秦蕴珊, 等. 冲绳海槽中部Jade 热液活动区中块状硫化物的稀土元素地球化学特征. 地质学报, 2001, 75:244-249
[2]  2 Dubinin A V. Geochemistry of rare earth elements in the Ocean. Lithol Miner Resour, 2004, 39: 289-307
[3]  3 Chudaev O, Chudaeva V, Sugimori K, et al. Composition and origin of modern hydrothermal systems of the Kuril island arc. Indian J Mar Sci, 2008, 37: 166-180
[4]  6 叶怡伶. 台湾地区温泉水中稀土元素之浓度及分布. 硕士学位论文. 台南: 成功大学, 2008. 34-60
[5]  11 Sanada T, Takamatsu N, Yoshiike Y. Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan. Geothermics, 2006, 35: 141-155
[6]  12 陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49°39′E 热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义. 科学通报, 2011,56: 2412-2423
[7]  13 Sverjensky D A. Europium redox equilibria in aqueous solution. Earth Planet Sci Lett, 1984, 67: 70-78
[8]  16 Wood S. The hydrothermal geochemistry of the rare earth elements. Gangue, 2004, 81: 1-7
[9]  17 包申旭, 周怀阳, 彭晓彤, 等. Juan de Fuca 洋脊Endeavour 段热液硫化物稀土元素地球化学特征. 地球化学, 2007, 36: 303-310
[10]  24 Shannon W M, Wood S A, Brown K, et al. Behavior of rare earth elements in geothermal systems: A new exploration/exploitation tool? In: Exploration Technology, Geothermal Energy R&D Program, 2001. 2-31
[11]  25 Wood S A. Rare earth element systematics of acidic geothermal waters from the Taupo Volcanic Zone, New Zealand. J Geochem Explor,2006, 89: 424-427
[12]  26 Lewis A J, Komninou A, Yardley B W D, et al. Rare earth element speciation in geothermal fluids from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta, 1998, 62: 657-663
[13]  28 Yoshiike Y. Variation in the chemical composition of Obuki Spring, Tamagawa Hot Springs (1951-2000). Geochem J, 2003, 37: 649-662
[14]  29 Shannon W M, Wood S A, Brown K, et al. REE contents and speciation in geothermal fluids from New Zealand. In: Proceedings of the10th International Symposium on Water-Rock Interaction. Villasimius: Balkema, 2001. 1001-1004
[15]  30 Arnórsson S, Stefánsson A, Bjarnason J. Fluid-Fluid Interactions in Geothermal Systems. Rev Mineral Geochem, 2007, 65: 259-312
[16]  31 Lewis A J, Palmer M R, Sturchio N C, et al. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta, 1997, 61: 695-706
[17]  38 Allen D E, Seyfried J W E. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure. Geochim Cosmochim Acta, 2005, 69: 675-683
[18]  39 Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol, 1991, 93: 219-230
[19]  40 Chiu C L, Song S R, Hsieh Y C, et al. Volcanic characteristics of Kueishantao in northeast Taiwan and their implications. Terr Atmos Ocean Sci, 2010, 21: 575-585
[20]  41 Chen C H, Lee T, Shieh Y N, et al. Magmatism at the onset of back-arc basin spreading in the Okinawa Trough. J Volcanol Geotherm Res,1995, 69: 313-322
[21]  42 Chen Y G, Wu W S, Chen C H, et al. A date for volcanic eruption inferred from a siltstone xenolith. Quat Sci Rev, 2001, 20: 869-873
[22]  43 Yeh Y H, Lin C H, Roecker S W. A study of upper crustal structures beneath northeastern Taiwan: Possible evidence of the western extension of Okinawa Trough. Proc Geol Soc China, 1989, 32: 139-156
[23]  44 Chung S L, Wang S L, Shinjo R, et al. Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terr Nova, 2000, 12: 225-230
[24]  49 曾志刚, 刘长华, 陈镇东, 等. 台湾岛东北部龟山岛热液区自然硫烟囱体的成因. 中国科学D 辑: 地球科学, 2007, 37: 1134-1140
[25]  50 刘长华, 曾志刚. 龟山岛附近海底热液自然硫烟囱体的硫同位素研究. 海洋与湖沼, 2007, 38: 118-123
[26]  51 Zeng Z G, Chen C T A, Yin X B, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan- Evidence from trace and rare earth element composition. J Asian Earth Sci, 2011, 40: 661-671
[27]  52 郭富雯. 龟山岛海底热液活动初步调查. 硕士学位论文. 高雄: 台湾中山大学, 2001. 12-15
[28]  53 刘刚. 海相碳酸盐-稀土元素共沉淀过程中的分异作用研究. 博士学位论文. 青岛: 中国科学院海洋研究所, 2008. 134
[29]  57 Serrano M J G, Sanz L F A, Nordstrom D K. REE speciation in low-temperature acidic waters and the competitive effects of aluminum. Chem Geol, 2000, 165: 167-180
[30]  58 Wood S. The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure. Chem Geol, 1990, 88: 99-125
[31]  4 Elderfield H. The oceanic chemistry of the rare-earth elements. Phil Trans R Soc Lond A, 1988, 325: 105-126
[32]  5 Zhang J, Nozaki Y. Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan. Geochim Cosmochim Acta, 1998, 62: 1307-1317
[33]  7 Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim Cosmochim Acta, 2010, 74: 675-683
[34]  8 Bau M, Usui A, Pracejus B, et al. Geochemistry of low-temperature water-rock interaction: Evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaido, Japan. Chem Geol, 1998, 151: 293-307
[35]  9 Wood S A, Shannon W M. Rare-earth elements in geothermal waters from Oregon, Nevada, and California. J Solid State Chem, 2003, 171:246-253
[36]  10 刘焱光, 孟宪伟, 付云霞. 冲绳海槽中部Jade 热液场烟囱物稀土元素和锶、钕同位素地球化学特征. 海洋学报, 2005, 27: 67-72
[37]  14 Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta, 1994, 58: 5105-5113
[38]  15 丁振举, 刘从强, 姚书振, 等. 海底热液系统高温流体的稀土元素组成及其控制因素. 地球科学进展, 2000, 15: 307-312
[39]  18 Mitra A, Elderfield H, Greaves M J. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar Chem, 1994, 46: 217-235
[40]  19 Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 1999, 63: 627-643
[41]  20 Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol, 2002, 184: 37-48
[42]  21 Schmidt K, Koschinsky A, Garbe-Sch?nberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem Geol, 2007, 242: 1-21
[43]  22 Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochem J, 2007,41: 1-15
[44]  23 Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth Planet Sci Lett, 2010, 299: 310-316
[45]  27 Michard A. Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta, 1989, 53: 745-750
[46]  32 Pichler T, Veizer J, Hall G E M. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem, 1999, 64: 229-252
[47]  33 Migdisov A A, Willianms-Jones A E, Wagner T. An experimental study of the solubility and speciation of the Rare Earth Elements(III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300℃. Geochim Cosmochim Acta, 2009, 73: 7087-7109
[48]  34 Hass J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta, 1995, 59:4329-4350
[49]  35 Gammons C H, Wood S A, Youning L. Complexation of the rare earth elements with aqueous chloride at 200℃ and 300℃ and saturated water vapor pressure. Geol Soc Spec Publ, 2002, 7: 191-207
[50]  36 Gammons C H, Wood S A, Williams-Jones A E. The aqueous geochemistry of the rare earth elements and yttrium: VI Stability of neodymium chloride complexes from 25 to 300℃. Geochim Cosmochim Acta, 1996, 60: 4615-4630
[51]  37 Campbell A C, Palmer M R, Klinkhammer G P, et al. Chemistry of hot springs on the Mid-Atlantic Ridge. Nature, 1988, 335: 514-519
[52]  45 Chen C T A, Wang B J, Huang J F, et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol Sin, 2005, 24: 125-133
[53]  46 Yang T F, Lan T F, Lee H F, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J, 2005, 39: 469-480
[54]  47 Chen C T A, Zeng Z G, Kuo F W, et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chem Geol, 2005, 224: 69-81
[55]  48 刘长华, 曾志刚, 殷学博, 等. 台湾岛东北部龟山岛附近海域自然硫烟囱体的基本特征研究. 台湾海峡, 2006, 25: 309-317
[56]  54 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ, 1989, 42: 313-345
[57]  55 Park S H, Lee S M, Kamenov G D, et al. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea. Chem Geol, 2010, 269: 339-349
[58]  56 曾志刚. 海底热液地质学. 北京: 科学出版社, 2011. 289-300

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133