全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用

, PP. 0-0

Keywords: 喜马拉雅造山带,北喜马拉雅片麻岩穹窿,淡色花岗岩,地壳深熔作用,构造转换

Full-Text   Cite this paper   Add to My Lib

Abstract:

佩枯错淡色花岗岩位于近东西向展布的北喜马拉雅片麻岩穹窿西侧的马拉山穹窿内,是一复合岩体,由电气石淡色花岗岩、二云母花岗岩和含石榴石淡色花岗岩组成.锆石U-Pb地质年代学研究表明(1)电气石淡色花岗岩形成于28.2±0.5Ma,其源岩经历了33.6±0.6Ma的变质作用和深熔事件;(2)二云母花岩形成于19.8±0.5Ma;(3)两种淡色花岗岩都包含有大量年龄为~480Ma的继承性锆石.在主量元素、微量元素和同位素(Sr,Nd和Hf)组成上,这3类淡色花岗岩具有明显的差异性.全岩初始Sr和Nd及锆石原位Hf同位素组成特征显示电气石淡色花岗岩的Sr和Hf同位素比值都高于二云母花岗岩,表明它们是不同源岩和不同部分熔融反应共同作用的结果.结合已有的数据,进一步表明藏南喜马拉雅造山带~35Ma深熔作用促使了藏南拆离系的启动,喜马拉雅造山带由逆冲增厚转化为伸展减薄,并引发变泥质岩发生大规模的减压部分熔融,~28Ma和~20Ma这两组年龄代表了藏南拆离系活动触发的更大规模的部分熔融和侵位.

References

[1]  1 Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13: 1537-1546
[2]  5 Le Fort P. Manaslu leucogranite: A collision signature of the Himalaya a model for its genesis and emplacement. J Geophys Res, 1981, 86:10545-10568
[3]  6 Pati?o Douce A E, Harris N. Experimental constraints on Himalayan Anatexis. J Petrol, 1998, 39: 689-710
[4]  7 Knesel K M, Davidson J P. Insight into collisional magmatism from isotopic fingerprints of melting reactions. Science, 2002, 296:2206-2208
[5]  8 高利娥, 曾令森, 刘静, 等. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 2009, 25:2289-2302
[6]  9 高利娥, 曾令森, 胡古月. 藏南确当高Sr/Y 比值二云母花岗岩的形成机制及其构造动力学意义. 地质通报, 2010, 29: 214-226
[7]  10 谢克家, 曾令森, 刘静, 等. 西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义. 岩石学报, 2010, 26: 1016-1026
[8]  11 Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 2011, 303: 251-266
[9]  12 Hou Z Q, Zheng Y C, Zeng L S, et al. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett, 2012, 349-350: 38-52
[10]  13 Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274: 14-23
[11]  14 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 2009, 54: 373-381
[12]  16 King J, Harris N, Argles T, et al. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Amer Bull, 2011, 123: 218-239
[13]  17 Gao L E, Zeng L S. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism. Abstract AGU Fall Meeting, 2011
[14]  18 Zeng L S, Gao L E, Dong C Y, et al. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Res, 2012, 21: 138-151
[15]  19 Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 2007, 35:45-48
[16]  21 张进江, 杨雄英, 戚国伟, 等. 马拉山穹窿的活动时限及其在藏南拆离系——北喜马拉雅片麻岩穹窿形成机制的应用. 岩石学报,2011, 27: 3535-3544
[17]  27 Debon F, Le Fort P, Sheppard S, et al. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal Section. J Petrol, 1986, 27: 219-250
[18]  32 Lee J, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar dome, southern Tibet: Structural, petrologic and thermochronologic constraints. Tectonics, 2000, 19: 872-895
[19]  33 Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 2010, 51: 537-571
[20]  34 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS 锆石Hf 同位素的分析方法及地质应用. 岩石学报, 2007, 23: 2595-2604
[21]  35 Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol, 2008, 255: 231-235
[22]  39 Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 2007, 82: 217-256
[23]  43 Lee J, Hacker B, Wang Y. Evolution of North Himalayan Gneiss Domes: structural and metamorphic studies in Mabja Dome, southern Tibet. J Struct Geol, 2004, 26: 2297-2316
[24]  44 Lee J, McClelland W, Wang Y, et al, Oligocene-Miocene middle crustal flow in southern Tibet: Geochronologic studies in Mabja Dome. In: Law R D, Searle M P, Godin L, eds. Channel Flow, Ductile Extrusion and Exhumation of Lower-mid Crust in Continental Collision Zones. Geol Soc Spec Publ, 2006, 268: 445-470
[25]  48 Sch?rer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China. Earth Planet Sci Lett, 1994, 126: 379-397
[26]  51 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280
[27]  52 Hurtado J M, Hodges K V, Whipple K X. Neotectonics of the Takkhola Graben and implications for recent activity on the South Tibetan Fault System in the central Nepalese Himalaya. Geol Sco Am Bull, 2001, 113: 222-240
[28]  53 Searle M P, Godin L. The south Tibetan detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol, 2003, 111: 505-523
[29]  54 Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev, 2006, 76: 1-131
[30]  2 Harris N, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscovite-implications for the extraction of Himalayan leucogranite magmas. J Geophys Res, 1995, 100: 15767-15777
[31]  3 Harrison T M, Oscar M L, Marty G, et al. New insight into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25:899-902
[32]  4 Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228: 195-212
[33]  15 Prince C, Harris N, Vance D. Fluid-enhanced melting during prograde metamorphism. J Geol Soc London, 2001, 158: 233-241
[34]  20 杨雄英, 张进江, 戚国伟, 等. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄. 中国科学D 辑: 地球科学, 2009, 39: 1128-1139
[35]  22 Zeng L S, Asimow P, Saleeby J B. Coupling of Anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of Anatectic melts from a metasedimentary source. Geochim Cosmochim Acta, 2005, 69: 3671-3682
[36]  23 Zeng L S, Saleeby J B, Asimow P. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, 2005, 33: 53-56
[37]  24 Aoya M, Wallis S R, Kawakami T, et al. The Malashan metamorphic complex in southern Tibet: Dominantly top-to the-north deformation and intrusive origin of its associated granites. Himal J Sci, 2004, 2: 92
[38]  25 Kawakami T, Aoya M, Wallis S R, et al. Contact metamorphism in the Malashan Dome, North Himalayan gneiss domes, southern Tibet: An example of shallow extensional tectonics in the Tethys Himalaya. J Metamorph Geol, 2007, 25: 831-853
[39]  26 Aoya M, Wallis S R, Terada K, et al. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 2005, 33:853-856
[40]  28 Harrison T M, Grove M, Lovera O M, et al. The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. J Asian Earth Sci, 1999, 17: 755-772
[41]  29 高利娥, 曾令森, 谢克家. 北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定. 科学通报, 2011, 56: 3078-3090
[42]  30 Sch?rer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet Sci Lett, 1986, 77:35-48
[43]  31 Pan G T, Ding J. 1:1500000 Geologic Map of the Tibetan Plateau and Adjacent Areas. 2004
[44]  36 Sláma J, Kosler J, Condon D J, et al. Plesovice zircon: A new nature reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1-35
[45]  37 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ, 1989, 42: 313-345
[46]  38 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的 U-Pb 年龄及其地质意义. 科学通报, 2004, 49:2090-2094
[47]  40 Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences of the age and source of Himalayan leucogranites. Contrib Mineral Petrol, 1987, 96: 78-92
[48]  41 Inger S, Harris N. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34:345-368
[49]  42 Harris N B W, Inger S. Trace element modeling of pelite-derived granites. Contrib Mineral Petrol, 1992, 110: 46-56
[50]  45 李海兵, Franck V, 刘敦一, 等. 喀喇昆仑断裂的形成时代: 锆石 SHRIMP U-Pb 年龄的制约. 科学通报, 2007, 52: 438-447
[51]  46 Meng Q R, Hu J M, Yang F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China. Terra Nova, 2003, 13: 86-91
[52]  47 Guo Z J, Lu J M, Zhang Z C. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: constraints from sedimentological and apatite fission-track Data. Acta Geol Sin, 2009, 83: 801-840
[53]  49 Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635-638
[54]  50 Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull, 2000, 112: 324-350

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133