11 Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 2011, 303: 251-266
[9]
12 Hou Z Q, Zheng Y C, Zeng L S, et al. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett, 2012, 349-350: 38-52
[10]
13 Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274: 14-23
16 King J, Harris N, Argles T, et al. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Amer Bull, 2011, 123: 218-239
[13]
17 Gao L E, Zeng L S. Mid-Miocene two-mica granites in the Malashan gneiss dome, south Tibet: Geochemical characteristics and formation mechanism. Abstract AGU Fall Meeting, 2011
[14]
18 Zeng L S, Gao L E, Dong C Y, et al. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Res, 2012, 21: 138-151
[15]
19 Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 2007, 35:45-48
27 Debon F, Le Fort P, Sheppard S, et al. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal Section. J Petrol, 1986, 27: 219-250
[18]
32 Lee J, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar dome, southern Tibet: Structural, petrologic and thermochronologic constraints. Tectonics, 2000, 19: 872-895
[19]
33 Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 2010, 51: 537-571
35 Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol, 2008, 255: 231-235
[22]
39 Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 2007, 82: 217-256
[23]
43 Lee J, Hacker B, Wang Y. Evolution of North Himalayan Gneiss Domes: structural and metamorphic studies in Mabja Dome, southern Tibet. J Struct Geol, 2004, 26: 2297-2316
[24]
44 Lee J, McClelland W, Wang Y, et al, Oligocene-Miocene middle crustal flow in southern Tibet: Geochronologic studies in Mabja Dome. In: Law R D, Searle M P, Godin L, eds. Channel Flow, Ductile Extrusion and Exhumation of Lower-mid Crust in Continental Collision Zones. Geol Soc Spec Publ, 2006, 268: 445-470
[25]
48 Sch?rer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China. Earth Planet Sci Lett, 1994, 126: 379-397
[26]
51 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280
[27]
52 Hurtado J M, Hodges K V, Whipple K X. Neotectonics of the Takkhola Graben and implications for recent activity on the South Tibetan Fault System in the central Nepalese Himalaya. Geol Sco Am Bull, 2001, 113: 222-240
[28]
53 Searle M P, Godin L. The south Tibetan detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol, 2003, 111: 505-523
[29]
54 Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev, 2006, 76: 1-131
[30]
2 Harris N, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscovite-implications for the extraction of Himalayan leucogranite magmas. J Geophys Res, 1995, 100: 15767-15777
[31]
3 Harrison T M, Oscar M L, Marty G, et al. New insight into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25:899-902
[32]
4 Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228: 195-212
[33]
15 Prince C, Harris N, Vance D. Fluid-enhanced melting during prograde metamorphism. J Geol Soc London, 2001, 158: 233-241
22 Zeng L S, Asimow P, Saleeby J B. Coupling of Anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of Anatectic melts from a metasedimentary source. Geochim Cosmochim Acta, 2005, 69: 3671-3682
[36]
23 Zeng L S, Saleeby J B, Asimow P. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology, 2005, 33: 53-56
[37]
24 Aoya M, Wallis S R, Kawakami T, et al. The Malashan metamorphic complex in southern Tibet: Dominantly top-to the-north deformation and intrusive origin of its associated granites. Himal J Sci, 2004, 2: 92
[38]
25 Kawakami T, Aoya M, Wallis S R, et al. Contact metamorphism in the Malashan Dome, North Himalayan gneiss domes, southern Tibet: An example of shallow extensional tectonics in the Tethys Himalaya. J Metamorph Geol, 2007, 25: 831-853
[39]
26 Aoya M, Wallis S R, Terada K, et al. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 2005, 33:853-856
[40]
28 Harrison T M, Grove M, Lovera O M, et al. The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. J Asian Earth Sci, 1999, 17: 755-772
30 Sch?rer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet Sci Lett, 1986, 77:35-48
[43]
31 Pan G T, Ding J. 1:1500000 Geologic Map of the Tibetan Plateau and Adjacent Areas. 2004
[44]
36 Sláma J, Kosler J, Condon D J, et al. Plesovice zircon: A new nature reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 2008, 249: 1-35
[45]
37 Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Spec Publ, 1989, 42: 313-345
40 Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences of the age and source of Himalayan leucogranites. Contrib Mineral Petrol, 1987, 96: 78-92
[48]
41 Inger S, Harris N. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34:345-368
[49]
42 Harris N B W, Inger S. Trace element modeling of pelite-derived granites. Contrib Mineral Petrol, 1992, 110: 46-56
46 Meng Q R, Hu J M, Yang F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China. Terra Nova, 2003, 13: 86-91
[52]
47 Guo Z J, Lu J M, Zhang Z C. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: constraints from sedimentological and apatite fission-track Data. Acta Geol Sin, 2009, 83: 801-840
[53]
49 Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635-638
[54]
50 Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull, 2000, 112: 324-350