全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平流层爆发性增温对阻塞高压的响应及其对对流层反馈的观测

, PP. 0-0

Keywords: 平流层爆发性增温,阻塞高压,极涡,平流层反馈,对流层异常

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用1979~2010年逐日的NCEP2再分析资料研究了对流层阻塞高压活动对平流层爆发性增温(SSW)的影响,以及增温发生后平流层异常对下层大气的反馈.对21个强SSW事件的动力诊断与合成分析表明在增温过程中平流层极涡会表现出不同的分布特征,并且极涡的这些扰动受到对流层中分布在不同区域的阻塞高压活动影响,因此根据极涡和阻塞的位置将SSW事件分为2种类型即极涡分裂型和偏心型.对于分裂型,在欧亚-北美(ENA)副型中,极涡分裂前在大西洋和阿留申群岛地区有典型的阻塞形势存在,它们向极地、向平流层伸展的作用使得极涡分裂,形成的两个低压中心分别位于欧亚和北美大陆;在大西洋-东亚(AEA)副型中,主要的阻塞活动位于乌拉尔山和北美大陆区域,极涡在高压系统的共同作用下分裂后位于大西洋和东亚地区.在偏心型中,一种是极涡偏移到欧洲西部、大西洋地区的阿留申侵入(AI)副型,这时平流层极涡被侵入极区的阿留申高压推挤,对应的阻塞高压活动位于太平洋及阿留申群岛区域;另一种副型是北美侵入(NAI)型,来自于北美大陆西部的高压中心侵入极区,对应了低层位于该地区的阻塞形势,极涡在高压系统的作用下偏移至欧亚大陆西部.本文研究的第二个问题是平流层爆发性增温后环流异常的信号能否向下传播到低层大气,这取决于极涡扰动的强度、位置和持续的时间.根据逐年的个例分析,在强SSW事件中位势高度异常可以向下传播至对流层,引起对流层高度场和温度场的变化,其传播时间从10hPa到500hPa大约需要10~15d.

References

[1]  4 Baldwin M P, Dunkerton T J. Propagation of the arctic oscillation from the stratosphere to the troposphere. J Geophys Res, 1999, 104: 30937-30946
[2]  5 Baldwin M P, Dunkerton T J. Stratospheric harbingers of anomalous weather regimes. Science, 2001, 294: 581-584
[3]  7 Julian P R, Labitzke K B. A study of atmospheric energetic during the January-February 1963 stratospheric warming. J Atmos Sci, 1965, 22: 597-610
[4]  16 Dole R M, Gordon N D. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon Weather Rev, 1983, 111: 1567-1586
[5]  18 Lu C H, Liu Y, Liu C X. Middle atmosphere response to ENSO events in northern hemisphere winter by the whole atmosphere community climate model. Atmos-Ocean, 2011, 49: 98-111
[6]  1 Andrews D G, Holton J R, Leovy C B. Middle Atmospheric Dynamics. San Diego: Academic Press, 1987
[7]  2 Kodera K, Kuroda Y, Pawson S, et al. Stratospheric sudden warming and slowly propagating zonal-mean zonal wind anomalies. J Geophys Res, 2000, 105: 12351-12359
[8]  3 Matsuno T. A dynamical model of stratospheric sudden warming. J Atmos Sci, 1971, 28: 1479-1494
[9]  6 Yoden S, Yamaga T, Pawson S, et al. A composite analysis of the stratospheric sudden warmings simulated in a perpetual January integration of the Berlin TSM GCM. J Meteor Soc Jpn, 1999, 77: 431-445
[10]  8 Quiroz R S. The association of stratospheric warmings with tropospheric blocking. J Geophys Res, 1986, 91: 5277-5285
[11]  9 Mukougawa H, Sakai H, Hirooka T. High sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys Res Lett, 2005, 32: L17806, doi: 10.1029/2005 GL022909
[12]  10 Kodera K, Chiba M. Tropospheric circulation changes associated with stratospheric sudden warmings: A case study. J Geophys Res, 1995, 100: 11055-11068
[13]  11 Mukougawa H, Hirooka T. Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon Weather Rev, 2004, 132: 1764-1776
[14]  12 Thompson D W J, Wallace J M. Regional climate impacts of the northern hemisphere annular mode. Science, 2001, 293: 85-89
[15]  13 Manney G L, Krüger K, Sabutis J L, et al. The remarkable 2003-2004 winter and other recent warm winters in the arctic stratosphere since the late 1990s. J Geophys Res, 2005, 110: D04107, doi: 10.1029/2004JD005367
[16]  14 Tibaldi S, Molteni F. On the operational predictability of blocking. Tellus, 1990, 42: 343-365
[17]  15 丁一汇. 高等天气学. 北京: 气象出版社, 2005. 460-480
[18]  17 Schwierz C, Croci-Maspoli M, Davies H C. Perspicacious indicators of atmospheric blocking. Geophys Res Lett, 2004, 31: L06125, doi: 10.1029/2003GL019341
[19]  19 Taguchi M. Is there a statistical connection between stratospheric sudden warming and tropospheric blocking events. J Atmos Sci, 2008, 65: 1442-1454
[20]  20 Martius O, Polvani L M, Davies H C. Blocking precursors to stratospheric sudden warming events. Geophys Res Lett, 2009, 36: L14806, doi: 10.1029/2009GL038776

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133