全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

双光子技术及其在生物医药分析中的应用

DOI: 10.1360/972010-1263, PP. 361-369

Keywords: 双光子技术,双光子材料,双光子激光扫描荧光显微镜,荧光共振能量转移,双光子超瑞利散射,双色激发荧光显微术,生物医药分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为近20年来迅速发展的一门新技术,双光子技术已被广泛应用于三维数据存储材料、医药、军事、生物以及生命科学等领域,并随学科交叉与融合,在揭示生命活动基本规律和起源的研究中发挥越来越重要的作用,为生物医学提供了更多、更为有效的手段.本文从常用的双光子材料以及双光子激光扫描荧光显微镜成像原理等方面,结合双光子技术在生物医学研究中的应用,探讨了这一新兴技术在生物医药分析领域的前景.

References

[1]  许金钩, 王尊本. 荧光分析法. 第3 版. 北京: 科学出版社, 2006
[2]  苏燕. 分子双光子特性的理论研究. 硕士学位论文. 济南: 山东师范大学, 2003. 52
[3]  Xu C, Zipfel W, Shear J B, et al. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. ProcNatl Acad Sci USA, 1996, 93: 10763-10768
[4]  Wang H, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad SciUSA, 2005, 102: 15752-15756
[5]  Durr N J, Larson T, Smith D K, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. NanoLett, 2007, 7: 941-945
[6]  Tong L, He W, Zhang Y, et al. Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photonluminescence. Langmuir, 2009, 25: 12454-12459
[7]  Zhou Y, Wu X, Wang T, et al. A comparison study of detecting gold nanorods in living cells with confocal reflectance microscopy andtwo-photon fluorescence microscopy. J Microsc, 2010, 237: 200-207
[8]  Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptorheterojunctions. Science, 1995, 270: 1789-1791
[9]  Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121-128
[10]  Albota M, Beljonne D, Brédas J L, et al. Design of organic molecules with large two-photon absorption cross sections. Science, 1998, 281:1653-1656
[11]  Rumi M, Ehrlich J E, Heikal A A, et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donordiphenylpolyene and bis(styryl)benzene derivatives. J Am Chem Soc, 2000, 122: 9500-9510
[12]  Wu C, Szymanski C, Cain Z, et al. Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc, 2007, 129:12904-12905
[13]  Wu C, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir, 2006,22: 2956-2960
[14]  Wu C, Peng H, Jiang Y, et al. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. J Phys Chem B,2006, 110: 14148-14154
[15]  Fulton T A, Dolan G J. Observation of single-electron charging effects in small tunnel junctions. Phys Rev Lett, 1987, 59: 109
[16]  宋国利, 杨幼桐, 孙凯霞, 等. 量子点的电子结构及量子效应. 黑龙江大学自然科学学报, 2002, 19: 80-83
[17]  Blanton S A, Dehestani A, Lin P C, et al. Photoluminescence of single semiconductor nanocrystallites by two-photon excitationmicroscopy. Chem Phys Lett, 1994, 229: 317-322
[18]  Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003,300: 1434-1436
[19]  Pu S C, Yang M J, Hsu C C, et al. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTequantum dots. Small, 2006, 2: 1308-1313
[20]  Yoder E J, Kleinfeld D. Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. MicroscRes Techniq, 2002, 56: 304-305
[21]  Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. NanoLett, 2006, 6: 2427-2430
[22]  Yao J, Larson D R, Vishwasrao H D, et al. Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. ProcNatl Acad Sci USA, 2005, 102: 14284-14289
[23]  Wang X, Ren X, Kahen K, et al. Non-blinking semiconductor nanocrystals. Nature, 2009, 459: 686-689
[24]  Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surfacemodification. Nano Lett, 2004, 4: 2163-2169
[25]  Guo G N, Liu W, Liang J G, et al. Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett, 2007, 61:1641-1644
[26]  Selvan S T, Tan T T, Ying J Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater,2005, 17: 1620-1625
[27]  Fu T, Qin H Y, Hu H J, et al. Aqueous synthesis and fluorescence-imaging application of CdTe/ZnSe core/shell quantum dots with highstability and low cytotoxicity. J Nanosci Nanotechnol, 2010, 10: 1741-1746
[28]  Chang S Q, Dai Y D, Kang B, et al. Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility andphotostability in living cells. J Nanosci Nanotechnol, 2009, 9: 5693-5700
[29]  Spinicelli P, Mahler B, Buil S, et al. Non-blinking semiconductor colloidal quantum dots for biology, optoelectronics and quantum optics.Chemphyschem, 2009, 10: 879-882
[30]  Tu C, Ma X, Pantazis P, et al. Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J AmChem Soc, 2010, 132: 2016-2023
[31]  Aratani N, Kim D, Osuka A. π-conjugation enlargement toward the creation of multi-porphyrinic systems with large two-photonabsorption properties. Chem-Asian J, 2009, 4: 1172-1182
[32]  Lim J M, Yoon Z S, Shin J Y, et al. The photophysical properties of expanded porphyrins: Relationships between aromaticity, moleculargeometry and non-linear optical properties. Chem Commun, 2008, 261-273
[33]  Raymond J E, Bhaskar A, Goodson T, et al. Synthesis and two-photon absorption enhancement of porphyrin macrocycles. J Am ChemSoc, 2008, 130: 17212-17213
[34]  张献. 新型双光子材料的设计、合成、表征及在光聚合和生物荧光探针中的应用. 博士学位论文. 济南: 山东大学, 2006. 162
[35]  Terenziani F, Parthasarathy V, Pla-Quintana A, et al. Cooperative two-photon absorption enhancement by through-space interactions inmultichromophoric compounds. Angew Chem, 2009, 121: 8847-8850
[36]  Wang X, Nguyen D M, Yanez C O, et al. High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging. J Am ChemSoc, 2010, 132: 12237-12239
[37]  Wang W, Qu W, Yang K, et al. Up-conversion properties of oxy-fluoride glasses co-doped with Ho3+ and Yb3+. J Rare Earth, 2006, 24:187-190
[38]  沈毅, 王少艳. 上转换发光材料研究进展与应用. 河北理工大学学报(自然科学版), 2009, 31: 76-79
[39]  陈晓波, 宋增福. Pr(0.5)Yb(3):ZBLAN 双频激发上转换的研究. 中国科学G 辑: 物理学 力学 天文学, 2006, 36: 164-171
[40]  Dong B, Sun M, Feng Z Q, et al. Effects of Yb3+ codoping on visible and near infrared emissions of Er3+-Yb3+ codoped Al2O3 powders bythe sol-gel method. Chinese Sci Bull, 2008, 53: 1967-1971
[41]  韩建儒, 周广勇, 张树君, 等. Ba2ErCl7 晶体的生长、结构和激光上转换机制[J].科学通报.1999, 44:2268-2272??浏览
[42]  Dong B, Gao Y C, Xu X S, et al. Near-infrared to visible up-conversion emissions of Er3+ doped Al2O3 powders derived from the sol-gelmethod. Chinese Sci Bull, 2007, 52: 2626-2629
[43]  Liu L, Shao M, Dong X, et al. Homogeneous immunoassay based on two-photon excitation fluorescence resonance energy transfer. AnalChem, 2008, 80: 7735-7741
[44]  Kuningas K, Ukonaho T, Pakkila H, et al. Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay forestradiol. Anal Chem, 2006, 78: 4690-4696
[45]  Heer S, Kompe K, Gudel H, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4nanocrystals. Adv Mater, 2004, 16: 2102-2105
[46]  Picot A, D'Aleo A, Baldeck P L, et al. Long-lived two-photon excited luminescence of water-soluble europium complex: Applications inbiological imaging using two-photon scanning microscopy. J Am Chem Soc, 2008, 130: 1532-1533
[47]  唐志列, 杨初平, 裴红津, 等. 双光子共焦电子显微镜的三维成像理论及其分辨率的改善. 中国科学A 辑, 2002, 32: 538-548
[48]  Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248: 73-76
[49]  Zhou W, Liu X L, Lu X H, et al. Monitor and control of neuronal activities with femtosecond pulse laser. Chinese Sci Bull, 2008, 53:687-694
[50]  Zipfel W R, Williams R M, Webb W W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotech, 2003, 21: 1369-1377
[51]  Dowley M W, Eisenthal K B, Peticolas W L. Two-photon laser excitation of polycyclic aromatic molecules. J Phys Chem, 1967, 47:1609-1619
[52]  Monson P R, McClain W M. Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid1-chloronaphthalene and benzene. J Phys Chem, 1970, 53: 29-37
[53]  Monson P R, McClain W M. Complete polarization study of the two-photon absorption of liquid 1-chloronaphthalene. J Phys Chem, 1972,56: 4817-4825
[54]  Fr?lich D, Mahr H. Two-photon spectroscopy in anthracene. Phys Rev Lett, 1966, 16: 895
[55]  McClain W M. Excited state symmetry assignment through polarized two-photon absorption studies of fluids. J Phys Chem, 1971, 55:2789-2796
[56]  Lakowicz J R, Gryczynski I, Malak H, et al. Two-color two-photon excitation of fluorescence. Photochem Photobiol, 1996, 64: 632-635
[57]  Quentmeier S, Denicke S, Gericke K H. Two-color two-photon fluorescence laser scanning microscopy. J Fluoresc, 2009, 19: 1037-1043
[58]  Drobizhev M, Karotki A, Kruk M, et al. Drastic enhancement of two-photon absorption in porphyrins associated with symmetricalelectron-accepting substitution. Chem Phys Lett, 2002, 361: 504-512
[59]  Karotki A, Drobizhev M, Kruk M, et al. Enhancement of two-photon absorption in tetrapyrrolic compounds. J Opt Soc Am B, 2003, 20:321-332
[60]  Ray P C, Sainudeen Z. Very large infrared two-photon absorption cross section of asymmetric zinc porphyrin aggregates: Role ofintermolecular interaction and donor-acceptor strengths. J Phys Chem A, 2006, 110: 12342-12347
[61]  Kim K S, Lim J M, Osuka A, et al. Various strategies for highly-efficient two-photon absorption in porphyrin arrays. J Photoch PhotobioC, 2008, 9: 13-28
[62]  Senge M O, Fazekas M, Notaras E G A, et al. Nonlinear optical properties of porphyrins. Adv Mater, 2007, 19: 2737-2774
[63]  王盛满. 双光子荧光显微镜的研究. 硕士学位论文. 杭州: 浙江大学, 2006. 64
[64]  Theer P, Hasan M T, Denk W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier.Opt Lett, 2003, 28: 1022-1024
[65]  Cahalan M D, Parker I, Wei S H, et al. Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat Rev Immunol, 2002, 2:872-880
[66]  Kim S, Huang H, Pudavar H E, et al. Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: An opticalhighlighter nanoprobe for two-photon bioimaging. Chem Mater, 2007, 19: 5650-5656
[67]  Liu L, Wei G, Liu Z, et al. Two-photon excitation fluorescence resonance energy transfer with small organic molecule as energy donor forbioassay. Bioconjugate Chem, 2008, 19: 574-579
[68]  Liu L, Dong X, Lian W, et al. Homogeneous competitive hybridization assay based on two-photon excitation fluorescence resonanceenergy transfer. Anal Chem, 2010, 82: 1381-1388
[69]  Clapp A, Pons T, Medintz I, et al. Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and itsapplications. Adv Mater, 2007, 19: 1921-1926
[70]  Dichtel W R, Serin J M, Edder C, et al. Singlet oxygen generation via two-photon excited FRET. J Am Chem Soc, 2004, 126: 5380-5381
[71]  Bhawalkar J D, Kumar N D, Zhao C F, et al. Two-photon photodynamic therapy. J Clin Laser Med Surg, 1997, 15: 201-204
[72]  罗光, 周上祺, 肖广渝, 等. 二次康普顿散射和产生双光子的康普顿散射. 重庆师范大学学报(自然科学版), 2007, 21: 1-4
[73]  汪昕, 崔一平. 研究分子非线性光学特性的新技术——超瑞利散射技术. 中国激光, 1999, 26: 15-20
[74]  张宇, 汪昕, 付德刚, 等. 纳米离子的超瑞利散射研究. 第一届全国纳米技术与应用学术会议论文集, 2000. 294-297
[75]  张宇, 汪昕, 马明, 等. 无机纳米粒子的二阶光学非线性研究进展. 无机化学学报, 2002. 18: 1177-1184
[76]  孟维伟, 刘忠芳, 刘绍璞, 等. 钯(Ⅱ)-盐酸吗啉胍螯合物与卤代荧光素染料相互作用的超瑞利散射光谱及其分析应用研究. 西南大学学报(自然科学版), 2009, 31: 49-53
[77]  Lu W, Arumugam S R, Senapati D, et al. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cellsusing simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano, 2010, 4: 1739-1749
[78]  Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of Alzheimer's disease biomarker using two-photonrayleigh scattering properties of gold nanoparticle. ACS Nano, 2009, 3: 2834-2840
[79]  Singh A K, Senapati D, Wang S, et al. Gold nanorod based selective identification of escherichia coli bacteria using two-photon rayleighscattering spectroscopy. ACS Nano, 2009, 3: 1906-1912
[80]  Quentmeier S, Denicke S, Ehlers J E, et al. Two-color two-photon excitation using femtosecond laser pulses. J Phys Chem B, 2008, 112:5768-5773
[81]  Hames B D, Hooper N M. Biochemistry. 北京: 科学出版社, 2003
[82]  Joshi N V, Joshi V O D, Contreras S, et al. Fluorescence lifetime measurements of native and glycated human serum albumin and bovineserum albumin. Proc SPIE, 1999, 3602: 124-131
[83]  Yves E. The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Spectrochim Acta A, 2001, 57: 2255-2270
[84]  Kurzban G P, Gitlin G, Bayer E A, et al. Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin. JProtein Chem, 1990, 9: 673-682
[85]  Quentmeier S, Quentmeier C C, Walla P J, et al. Two-color two-photon excitation of intrinsic protein fluorescence: Label-free observationof proteolytic digestion of bovine serum albumin. ChemPhysChem, 2009, 10: 1607-1613
[86]  Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol,2004, 22: 93-97
[87]  Sevick-Muraca E M, Houston J P, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr OpinChem Bio, 2002, 6: 642-650

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133