52 Jin K, Li J, Vizeacoumar F S, et al. PhenoM: A database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Res, 2012, 40: D687-D694
[2]
56 Springer P S, McCombie W R, Sundaresan V, et al. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science, 1995, 268: 877-880
[3]
57 Fang Q H, Zhong J J. Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog, 2002, 18: 51-54
[4]
61 Senthil-Kumar M, Mysore K S. New dimensions for VIGS in plant functional genomics. Trends Plant Sci, 2011, 16: 656-665
[5]
67 Kim Y, Kweon J, Kim A, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol, 2013, 31: 251-258
[6]
72 Zhang Y, Zhang F, Li X, et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol, 2013, 161: 20-27
[7]
73 Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30: 390-392
[8]
74 Qi X, Bakht S, Leggett M, et al. A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA, 2004, 101: 8233-8238
[9]
77 Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 2011, 23: 1512-1522
2 Chen S L, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun, 2012, 3: 913
[14]
4 Davis R H. The age of model organisms. Nat Rev Genet, 2004, 5: 69-76
[15]
5 朱作言. 模式生物研究. 生命科学, 2006, 18: 419
[16]
6 Traver D, Herbomel P, Patton E E, et al. The zebrafish as a model organism to study development of the immune system. Adv Immunol, 2003, 81: 253-330
[17]
7 Wu H J, Zhang Z, Wang J Y, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA, 2012, 109: 12219-12224
[18]
9 Kliebenstein D J, Osbourn A. Making new molecules—evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol, 2012, 15: 415-423
[19]
10 Meldau S, Erb M, Baldwin I T. Defence on demand: Mechanisms behind optimal defence patterns. Ann Bot, 2012, 110: 1503-1514
14 Julsing M K, Koulman A, Woerdenbag H J, et al. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng, 2006, 23: 265-279
[22]
15 Fields S, Johnston M. Whither model organism research? Science, 2005, 307: 1885-1886
[23]
16 Yan Y P, Wang Z Z. Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Organ Cult, 2007, 88: 175-184
[24]
18 Kiselev K V, Kusaykin M I, Dubrovina A S, et al. The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells. Phytochemistry, 2006, 67: 2225-2231
[25]
19 Hwang S J. Catapol production in Chinese foxglove (Rehmannia glutinosa Libos.) hairy roots transformed with Agrobacterium rhizogenes ATCC15834. Methods Mol Biol, 2009, 547: 263-273
[26]
20 Geu-Flores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 2012, 492: 138-142
[27]
21 Graham I A, Besser K, Blumer S, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 2010, 327: 328-331
[28]
22 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[29]
23 Joyce A R, Palsson B O. The model organism as a system: Integrating ‘omics' data sets. Nat Rev Mol Cell Biol, 2006, 7: 198-210
[30]
24 Dunwell J M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol J, 2010, 8: 377-424
[31]
25 Germana M A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep, 2011, 30: 839-857
[32]
26 Ravi M, Chan S W. Haploid plants produced by centromere-mediated genome elimination. Nature, 2010, 464: 615-618
[33]
27 Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163-168
[34]
28 Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162
[35]
30 Lin J, Qi R, Aston C, et al. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science, 1999, 285: 1558-1562
[36]
32 Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323: 133-138
[37]
33 Koren S, Miller J R, Walenz B P, et al. An algorithm for automated closure during assembly. BMC Bioinformatics, 2010, 11: 457
[38]
35 Morrow J F, Berg P. Cleavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme. Proc Natl Acad Sci USA, 1972, 69: 3365-3369
[39]
36 Jackson D A, Symons R H, Berg P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA, 1972, 69: 2904-2909
[40]
45 Lee J H, Lee S Y. Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tiss Organ Cult, 2002, 71: 165-171
[41]
50 Kuromori T, Takahashi S, Kondou Y, et al. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol, 2009, 50: 1215-1231
[42]
51 Maloy S R, Hughes K T. Strain collections and genetic nomenclature. Methods Enzymol, 2007, 421: 3-8
8 Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17: 12771-12791
[45]
11 Vanstraelen M, Benkova E. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol, 2012, 28: 463-487
[46]
12 Tissier A. Glandular trichomes: What comes after expressed sequence tags? Plant J, 2012, 70: 51-68
[47]
17 Sun L, Cai H, Xu W, et al. CaMV 35S promoter directs beta-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol, 2002, 20: 239-244
[48]
29 Lai Z, Jing J, Aston C, et al. A shotgun optical map of the entire Plasmodium falciparum genome. Nat Genet, 1999, 23: 309-313
[49]
31 Shendure J, Lieberman A E. The expanding scope of DNA sequencing. Nat Biotechnol, 2012, 30: 1084-1094
[50]
34 Li R, Yu C, Li Y, et al. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966-1967
[51]
37 Frandsen R J. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods, 2011, 87: 247-262
[52]
38 Shrawat A K, Lorz H. Agrobacterium-mediated transformation of cereals: A promising approach crossing barriers. Plant Biotechnol J, 2006, 4: 575-603
[53]
39 Sheludko Y V. Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat Biotechnol, 2008, 2: 198-208
[54]
40 Sidorov V A, Kasten D, Pang S Z, et al. Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. Plant J, 1999, 19: 209-216
[55]
41 Day A, Goldschmidt-Clermont M. The chloroplast transformation toolbox: Selectable markers and marker removal. Plant Biotechnol J, 2011, 9: 540-553
[56]
42 Krichevsky A, Zaltsman A, King L, et al. Expression of complete metabolic pathways in transgenic plants. Biotechnol Genet Eng Rev, 2012, 28: 1-13
[57]
43 Sundar I K, Sakthivel N. Advances in selectable marker genes for plant transformation. J Plant Physiol, 2008, 165: 1698-1716
[58]
44 Tuteja N, Verma S, Sahoo R K, et al. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J Biosci, 2012, 37: 167-197
[59]
46 Proano V A, Greene G L. Endogenous gibberellins of a radiation induced single gene dwarf mutant of bean. Plant Physiol, 1968, 43: 613-618
[60]
47 Kumar A, Snyder M. Emerging technologies in yeast genomics. Nat Rev Genet, 2001, 2: 302-312
[61]
48 Alonso J M, Stepanova A N, Leisse T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653-657
[62]
49 Zhang J, Li C, Wu C, et al. RMD: A rice mutant database for functional analysis of the rice genome. Nucleic Acids Res, 2006, 34 (Suppl 1): D745-D748
[63]
53 Takeshita H, Sawa H. Asymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans. Genes Dev, 2005, 19: 1743-1748
55 Sun L V, Jin K, Liu Y, et al. PBmice: An integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic Acids Res, 2008, 36 (Suppl 1): D729-D734
[66]
58 Talano M A, Oller A L, Gonzalez P S, et al. Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol, 2012, 6: 115-133
[67]
59 Lee W S, Hammond-Kosack K E, Kanyuka K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol, 2012, 160: 582-590
62 Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 2012, 336: 1704-1708
[70]
63 Hatlestad G J, Sunnadeniya R M, Akhavan N A, et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet, 2012, 44: 816-820
[71]
64 Tang Y, Wang F, Zhao J, et al. Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol, 2010, 153: 632-641
[72]
65 Allemand I, Angulo J F. Transgenic and knock-out models for studying DNA repair. Biochimie, 1995, 77: 826-832
[73]
66 Bedell V M, Wang Y, Campbell J M, et al. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491: 114-118
[74]
68 Ding Q, Lee Y K, Schaefer E A, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12: 238-251
[75]
69 Sung Y H, Baek I J, Kim D H, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol, 2013, 31: 23-24
[76]
70 Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10: 329-331
[77]
71 Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA, 2012, 109: 17484-17489
[78]
75 Field B, Osbourn A E. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science, 2008, 320: 543-547
[79]
76 Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827