全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

药用模式生物研究策略

DOI: 10.1360/972013-565, PP. 733-742

Keywords: 模式生物,药用生物学,次生代谢,道地药材,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

模式生物是用于研究某种特定的生物学现象而被选定的物种.基于模式生物的研究策略已经在多个生物学领域取得巨大的成功,揭示了众多生命科学的机理,发展了一系列生命科学研究技术.近年来,现代生物学发展迅速,其相关的概念和技术正不断渗入并影响着药用生物的研究领域,包括基于模式生物的研究策略.丹参(Salviamiltiorrhiza)、灵芝(Ganodermalucidum)等模式药用生物已经提出了多年,受到国内外的广泛关注.但是由于缺乏成熟的模式药用生物研究体系,使得当前药用生物的研究成果比较分散,难以在理论水平上汇总提高,极大地消耗了药用生物界的研究资源和研究力量,阻碍了药用生物学的发展.本文结合近期药用生物学的研究成果,从药用模式生物研究体系建立的必要性出发,提出了药用模式生物研究体系的基本概念和建立目的,分析了应用药用模式生物研究体系研究的可行性,提出了药用模式生物的选择原则并从遗传信息获得、遗传转化体系建立、突变体库构建和次生代谢物生产体系建立4个方面描述了药用模式生物研究体系的建立策略.本文还介绍了以药用模式生物为对象的次生代谢产物生源合成及调控研究策略,同时认为,药用模式生物体系在阐释药材道地性等中医药传统问题及发展合成生物学等现代科学前沿中发挥重要作用.

References

[1]  52 Jin K, Li J, Vizeacoumar F S, et al. PhenoM: A database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae. Nucleic Acids Res, 2012, 40: D687-D694
[2]  56 Springer P S, McCombie W R, Sundaresan V, et al. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science, 1995, 268: 877-880
[3]  57 Fang Q H, Zhong J J. Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog, 2002, 18: 51-54
[4]  61 Senthil-Kumar M, Mysore K S. New dimensions for VIGS in plant functional genomics. Trends Plant Sci, 2011, 16: 656-665
[5]  67 Kim Y, Kweon J, Kim A, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol, 2013, 31: 251-258
[6]  72 Zhang Y, Zhang F, Li X, et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol, 2013, 161: 20-27
[7]  73 Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30: 390-392
[8]  74 Qi X, Bakht S, Leggett M, et al. A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA, 2004, 101: 8233-8238
[9]  77 Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 2011, 23: 1512-1522
[10]  78 肖小河, 陈士林, 黄璐琦, 等. 中国道地药材研究20年概论. 中国中药杂志, 2009, 34: 519-523
[11]  79 孟祥才, 陈士林, 王喜军. 论道地药材及栽培产地变迁. 中国中药杂志, 2011, 36: 1687-1692
[12]  1 孙超, 胡鸢雷, 徐江, 等. 灵芝: 一种研究天然药物合成的模式真菌. 中国科学: 生命科学, 2013, 43: 1-10
[13]  2 Chen S L, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun, 2012, 3: 913
[14]  4 Davis R H. The age of model organisms. Nat Rev Genet, 2004, 5: 69-76
[15]  5 朱作言. 模式生物研究. 生命科学, 2006, 18: 419
[16]  6 Traver D, Herbomel P, Patton E E, et al. The zebrafish as a model organism to study development of the immune system. Adv Immunol, 2003, 81: 253-330
[17]  7 Wu H J, Zhang Z, Wang J Y, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA, 2012, 109: 12219-12224
[18]  9 Kliebenstein D J, Osbourn A. Making new molecules—evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol, 2012, 15: 415-423
[19]  10 Meldau S, Erb M, Baldwin I T. Defence on demand: Mechanisms behind optimal defence patterns. Ann Bot, 2012, 110: 1503-1514
[20]  13 陈士林, 孙永珍, 徐江, 等. 本草基因组计划研究策略. 药学学报, 2010, 45: 807-812
[21]  14 Julsing M K, Koulman A, Woerdenbag H J, et al. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng, 2006, 23: 265-279
[22]  15 Fields S, Johnston M. Whither model organism research? Science, 2005, 307: 1885-1886
[23]  16 Yan Y P, Wang Z Z. Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Organ Cult, 2007, 88: 175-184
[24]  18 Kiselev K V, Kusaykin M I, Dubrovina A S, et al. The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells. Phytochemistry, 2006, 67: 2225-2231
[25]  19 Hwang S J. Catapol production in Chinese foxglove (Rehmannia glutinosa Libos.) hairy roots transformed with Agrobacterium rhizogenes ATCC15834. Methods Mol Biol, 2009, 547: 263-273
[26]  20 Geu-Flores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 2012, 492: 138-142
[27]  21 Graham I A, Besser K, Blumer S, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 2010, 327: 328-331
[28]  22 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[29]  23 Joyce A R, Palsson B O. The model organism as a system: Integrating ‘omics' data sets. Nat Rev Mol Cell Biol, 2006, 7: 198-210
[30]  24 Dunwell J M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol J, 2010, 8: 377-424
[31]  25 Germana M A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep, 2011, 30: 839-857
[32]  26 Ravi M, Chan S W. Haploid plants produced by centromere-mediated genome elimination. Nature, 2010, 464: 615-618
[33]  27 Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163-168
[34]  28 Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162
[35]  30 Lin J, Qi R, Aston C, et al. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science, 1999, 285: 1558-1562
[36]  32 Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323: 133-138
[37]  33 Koren S, Miller J R, Walenz B P, et al. An algorithm for automated closure during assembly. BMC Bioinformatics, 2010, 11: 457
[38]  35 Morrow J F, Berg P. Cleavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme. Proc Natl Acad Sci USA, 1972, 69: 3365-3369
[39]  36 Jackson D A, Symons R H, Berg P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: Circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA, 1972, 69: 2904-2909
[40]  45 Lee J H, Lee S Y. Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tiss Organ Cult, 2002, 71: 165-171
[41]  50 Kuromori T, Takahashi S, Kondou Y, et al. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol, 2009, 50: 1215-1231
[42]  51 Maloy S R, Hughes K T. Strain collections and genetic nomenclature. Methods Enzymol, 2007, 421: 3-8
[43]  3 宋经元, 罗红梅, 李春芳, 等. 丹参药用模式植物研究探讨. 药学学报, 2013, 48: 1099-1106
[44]  8 Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17: 12771-12791
[45]  11 Vanstraelen M, Benkova E. Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol, 2012, 28: 463-487
[46]  12 Tissier A. Glandular trichomes: What comes after expressed sequence tags? Plant J, 2012, 70: 51-68
[47]  17 Sun L, Cai H, Xu W, et al. CaMV 35S promoter directs beta-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol, 2002, 20: 239-244
[48]  29 Lai Z, Jing J, Aston C, et al. A shotgun optical map of the entire Plasmodium falciparum genome. Nat Genet, 1999, 23: 309-313
[49]  31 Shendure J, Lieberman A E. The expanding scope of DNA sequencing. Nat Biotechnol, 2012, 30: 1084-1094
[50]  34 Li R, Yu C, Li Y, et al. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966-1967
[51]  37 Frandsen R J. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods, 2011, 87: 247-262
[52]  38 Shrawat A K, Lorz H. Agrobacterium-mediated transformation of cereals: A promising approach crossing barriers. Plant Biotechnol J, 2006, 4: 575-603
[53]  39 Sheludko Y V. Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat Biotechnol, 2008, 2: 198-208
[54]  40 Sidorov V A, Kasten D, Pang S Z, et al. Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker. Plant J, 1999, 19: 209-216
[55]  41 Day A, Goldschmidt-Clermont M. The chloroplast transformation toolbox: Selectable markers and marker removal. Plant Biotechnol J, 2011, 9: 540-553
[56]  42 Krichevsky A, Zaltsman A, King L, et al. Expression of complete metabolic pathways in transgenic plants. Biotechnol Genet Eng Rev, 2012, 28: 1-13
[57]  43 Sundar I K, Sakthivel N. Advances in selectable marker genes for plant transformation. J Plant Physiol, 2008, 165: 1698-1716
[58]  44 Tuteja N, Verma S, Sahoo R K, et al. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J Biosci, 2012, 37: 167-197
[59]  46 Proano V A, Greene G L. Endogenous gibberellins of a radiation induced single gene dwarf mutant of bean. Plant Physiol, 1968, 43: 613-618
[60]  47 Kumar A, Snyder M. Emerging technologies in yeast genomics. Nat Rev Genet, 2001, 2: 302-312
[61]  48 Alonso J M, Stepanova A N, Leisse T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653-657
[62]  49 Zhang J, Li C, Wu C, et al. RMD: A rice mutant database for functional analysis of the rice genome. Nucleic Acids Res, 2006, 34 (Suppl 1): D745-D748
[63]  53 Takeshita H, Sawa H. Asymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans. Genes Dev, 2005, 19: 1743-1748
[64]  54 Tweedie S, Ashburner M, Falls K, et al. FlyBase: Enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res, 2009, 37 (Suppl 1): D555-D559
[65]  55 Sun L V, Jin K, Liu Y, et al. PBmice: An integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic Acids Res, 2008, 36 (Suppl 1): D729-D734
[66]  58 Talano M A, Oller A L, Gonzalez P S, et al. Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol, 2012, 6: 115-133
[67]  59 Lee W S, Hammond-Kosack K E, Kanyuka K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol, 2012, 160: 582-590
[68]  60 许亮, 卢向阳, 田云. 后基因组时代基因功能分析的策略. 中国生物工程杂志, 2003, 23: 29-34
[69]  62 Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science, 2012, 336: 1704-1708
[70]  63 Hatlestad G J, Sunnadeniya R M, Akhavan N A, et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet, 2012, 44: 816-820
[71]  64 Tang Y, Wang F, Zhao J, et al. Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol, 2010, 153: 632-641
[72]  65 Allemand I, Angulo J F. Transgenic and knock-out models for studying DNA repair. Biochimie, 1995, 77: 826-832
[73]  66 Bedell V M, Wang Y, Campbell J M, et al. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491: 114-118
[74]  68 Ding Q, Lee Y K, Schaefer E A, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12: 238-251
[75]  69 Sung Y H, Baek I J, Kim D H, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol, 2013, 31: 23-24
[76]  70 Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10: 329-331
[77]  71 Lei Y, Guo X, Liu Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA, 2012, 109: 17484-17489
[78]  75 Field B, Osbourn A E. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science, 2008, 320: 543-547
[79]  76 Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133